JelloMatrix Result

If this looks like the beginning of a new math, that is because it is. It's actually a very old math reborn.

Welcome. Contact me directly at ana at jellobrain dot com if you'd like to talk about it.

This tool takes two numbers and creates a matrix grid with them, and then performs all sorts of calculations including harmonics and derivative value shifts between numbers in their numerical contexts (topologies).

In addition and perhaps more specifically, this tool evaluates matrices spliced with inverse (upside down) copies of themselves, and looks for waveforms in the resulting numerical topologies with the following characteristics:

  1. Bands of numbers in the spliced matrix with equal values adjacent to one another...
  2. which connect in predictable sine wave forms with one another...
  3. following the order of a scale which is determined by the top row of values in the unspliced and native "seed" matrix...
  4. rhythms that are even numbered change polarity at the crests of the waveforms, while odd rhythms change polarity at each shift in position.
  5. and harmonically cycle between zero and infinity.

Aspects of that set of characteristics will appear even if the full pattern is not present in unison.

In addition, the patterns seem to continue to contain these inherent characheristics even when the two polar grids are spliced in a way that they are offset.

Following the grid drawings will lead you through the story of how they are created, and enterring a value in the form to offset the grids will generate an offset grid.

This is where we see that even if the grids are offset vertically from one another, they still have an opportunity to be scale active and seem to function like Moire patterns in that sense.

You have scales!



The Original Matrix


1611510493827
2716115104938
3827161151049
4938271611510
5104938271611
6115104938271
7161151049382
8271611510493
9382716115104
1049382716115
1151049382716
1611510493827
2716115104938
3827161151049
4938271611510
5104938271611



Scale Pattern:

Whether you look at each row individually, or look at each diagonal row (in forward or backward 'slash' directions) you will notice that the order of numbers is consistent on every row (or each direction of diagonal rows) and that only the starting number differs from row to row. I refer to this as a 'scale'. If the scale were to be played in a circle consisting of the numbers of the first 'tone' value, the shape formed would be the same regardless of which number you start with.

  


HORIZONTAL SCALE [<->] (5/6): 1, 6, 11, 5, 10, 4, 9, 3, 8, 2, 7,
FORWARD SLASH DIAGONAL SCALE [/] (4/7): 1, 5, 9, 2, 6, 10, 3, 7, 11, 4, 8,
BACKWARD SLASH DIAGONAL SCALE [\] (6/5): 1, 7, 2, 8, 3, 9, 4, 10, 5, 11, 6, ...




The Basic Orientation of the Spliced Matrix

Why splice the initial matrix? This started out as a hunch, but also following the work of Jose Arguilles who inspired this up to a point. But also the work of Mark Rothko and Randy Powell with their ABHA torus to which the matrix forms here bare some relation but which diverge from what Randy and Mark are doing in important ways. In my mind, splicing the matrix creates an architecture that reminded me of a battery. I do not think this analogy is off-base. When we combine this notion while also looking for the patterns in the 'scales' found in the original matrix, we see emergent patterns and pathways. The next progression of images takes you through a categorization of some of those patterns.

15610114591034892378126711
24791368112571014691135810
33882277116611115510104499
42973186211751106411953108
51106411953108429731862117
61111551010449933882277116
71014691135810247913681125
89237812671115610114591034
98328721761116511105410943
10741963118521074196311852
11651110541094398328721761
15610114591034892378126711
24791368112571014691135810
33882277116611115510104499
42973186211751106411953108
51106411953108429731862117

HIGHLIGHTING PRIMES: The Spliced Matrix

15610114591034892378126711
24791368112571014691135810
33882277116611115510104499
42973186211751106411953108
51106411953108429731862117
61111551010449933882277116
71014691135810247913681125
89237812671115610114591034
98328721761116511105410943
10741963118521074196311852
11651110541094398328721761
15610114591034892378126711
24791368112571014691135810
33882277116611115510104499
42973186211751106411953108
51106411953108429731862117

HIGHLIGHTING EVEN+ODD: The Spliced Matrix

15610114591034892378126711
24791368112571014691135810
33882277116611115510104499
42973186211751106411953108
51106411953108429731862117
61111551010449933882277116
71014691135810247913681125
89237812671115610114591034
98328721761116511105410943
10741963118521074196311852
11651110541094398328721761
15610114591034892378126711
24791368112571014691135810
33882277116611115510104499
42973186211751106411953108
51106411953108429731862117

Interstingly enough, the sections which seem to hold information about the vortec/ies they reflect seem to fall most often in the middle of the sine waves created by what appear to be very different "environments" or "gradients" between higher frequency oscillations of even and odd numbers (you might need to squint your eyes to see them), They are the waves defined by the more or less frequent oscillatory patterns taken as a whole. More about this in the "Rows" calculations in the "Increments" section below.


HORIZONTAL SCALED WAVES

WAVE FORM POLE SHIFT: Highlighting the adjacent equal values.

15610114591034892378126711
24791368112571014691135810
33882277116611115510104499
42973186211751106411953108
51106411953108429731862117
61111551010449933882277116
71014691135810247913681125
89237812671115610114591034
98328721761116511105410943
10741963118521074196311852
11651110541094398328721761
15610114591034892378126711
24791368112571014691135810
33882277116611115510104499
42973186211751106411953108
51106411953108429731862117



HORIZONTAL SCALE [<->] (5/6): 1, 6, 11, 5, 10, 4, 9, 3, 8, 2, 7,


WAVE FORM SCALES: The Waveform Scales: EVEN Rhythms

15610114591034892378126711
24791368112571014691135810
33882277116611115510104499
42973186211751106411953108
51106411953108429731862117
61111551010449933882277116
71014691135810247913681125
89237812671115610114591034
98328721761116511105410943
10741963118521074196311852
11651110541094398328721761
15610114591034892378126711
24791368112571014691135810
33882277116611115510104499
42973186211751106411953108
51106411953108429731862117


WAVE FORM SCALES: The Waveform Scales: ODD Rhythms

15610114591034892378126711
24791368112571014691135810
33882277116611115510104499
42973186211751106411953108
51106411953108429731862117
61111551010449933882277116
71014691135810247913681125
89237812671115610114591034
98328721761116511105410943
10741963118521074196311852
11651110541094398328721761
15610114591034892378126711
24791368112571014691135810
33882277116611115510104499
42973186211751106411953108
51106411953108429731862117


Scale Pattern:

Not all detected waveforms will render completely above.


RED = Start of wave.

EVEN Waves

Starting 4: scale direction = forward, rhythm = 2, initial vertical = down, color = gold.

Starting 10: scale direction = forward, rhythm = 2, initial vertical = up, color = green.

Starting 3: scale direction = forward, rhythm = 6, initial vertical = up, color = salmon.

ODD Waves

Starting 1: scale direction = forward, rhythm = 5, initial vertical = down, color = royalblue.

Starting 9: scale direction = forward, rhythm = 5, initial vertical = up, color = olive.


EVEN Tone 3 with 2 wavelength/s counted.
phi(wavelengths multiplied)/wavelengths added = 0.61804697156984*21/10 = 1.2978986402967
ODD Tone 3 with 2 wavelength/s counted.
Half-wavelength for rhythm 5 is 6.
phi(wavelengths multiplied)/wavelengths added = 0.61804697156984*6/6 = 0.61804697156984
EVEN Tone 6 with 0 wavelength/s counted.
phi(wavelengths multiplied)/wavelengths added = 0.61804697156984*1/0 = 1.2978986402967
ODD Tone 6 with 0 wavelength/s counted.
Half-wavelength for rhythm 5 is 6.
phi(wavelengths multiplied)/wavelengths added = 0.61804697156984*6/6 = 0.61804697156984



FORWARD BACKSLASH SCALED WAVES



FORWARD SLASH DIAGONAL SCALE [/] (4/7): 1, 5, 9, 2, 6, 10, 3, 7, 11, 4, 8,


WAVE FORM SCALES: The Waveform Scales: EVEN Rhythms

15610114591034892378126711
24791368112571014691135810
33882277116611115510104499
42973186211751106411953108
51106411953108429731862117
61111551010449933882277116
71014691135810247913681125
89237812671115610114591034
98328721761116511105410943
10741963118521074196311852
11651110541094398328721761
15610114591034892378126711
24791368112571014691135810
33882277116611115510104499
42973186211751106411953108
51106411953108429731862117


WAVE FORM SCALES: The Waveform Scales: ODD Rhythms

15610114591034892378126711
24791368112571014691135810
33882277116611115510104499
42973186211751106411953108
51106411953108429731862117
61111551010449933882277116
71014691135810247913681125
89237812671115610114591034
98328721761116511105410943
10741963118521074196311852
11651110541094398328721761
15610114591034892378126711
24791368112571014691135810
33882277116611115510104499
42973186211751106411953108
51106411953108429731862117


Scale Pattern:

Not all detected waveforms will render completely above.


RED = Start of wave.

EVEN Waves

Starting 3: scale direction = forward, rhythm = 2, initial vertical = down, color = gold.

Starting 3: scale direction = forward, rhythm = 10, initial vertical = up, color = olive.

ODD Waves

Starting 2: scale direction = forward, rhythm = 9, initial vertical = down, color = royalblue.

Starting 10: scale direction = forward, rhythm = 1, initial vertical = up, color = green.

Starting 3: scale direction = forward, rhythm = 7, initial vertical = up, color = salmon.

Starting 10: scale direction = forward, rhythm = 9, initial vertical = up, color = yellowgreen.


EVEN Tone 3 with 2 wavelength/s counted.
phi(wavelengths multiplied)/wavelengths added = 0.61804697156984*33/14 = 1.4568250044146
ODD Tone 3 with 2 wavelength/s counted.
Half-wavelength for rhythm 1 is 2.
Half-wavelength for rhythm 7 is 8.
Half-wavelength for rhythm 9 is 10.
phi(wavelengths multiplied)/wavelengths added = 0.61804697156984*160/20 = 4.9443757725587
EVEN Tone 6 with 0 wavelength/s counted.
phi(wavelengths multiplied)/wavelengths added = 0.61804697156984*1/0 = 1.4568250044146
ODD Tone 6 with 0 wavelength/s counted.
Half-wavelength for rhythm 9 is 10.
phi(wavelengths multiplied)/wavelengths added = 0.61804697156984*10/10 = 0.61804697156984



BACKWARD BACKSLASH SCALED WAVES



BACKWARD SLASH DIAGONAL SCALE [\] (6/5): 1, 7, 2, 8, 3, 9, 4, 10, 5, 11, 6,


WAVE FORM SCALES: The Waveform Scales: EVEN Rhythms

15610114591034892378126711
24791368112571014691135810
33882277116611115510104499
42973186211751106411953108
51106411953108429731862117
61111551010449933882277116
71014691135810247913681125
89237812671115610114591034
98328721761116511105410943
10741963118521074196311852
11651110541094398328721761
15610114591034892378126711
24791368112571014691135810
33882277116611115510104499
42973186211751106411953108
51106411953108429731862117


WAVE FORM SCALES: The Waveform Scales: ODD Rhythms

15610114591034892378126711
24791368112571014691135810
33882277116611115510104499
42973186211751106411953108
51106411953108429731862117
61111551010449933882277116
71014691135810247913681125
89237812671115610114591034
98328721761116511105410943
10741963118521074196311852
11651110541094398328721761
15610114591034892378126711
24791368112571014691135810
33882277116611115510104499
42973186211751106411953108
51106411953108429731862117


Scale Pattern:

Not all detected waveforms will render completely above.


RED = Start of wave.

EVEN Waves

Starting 3: scale direction = forward, rhythm = 2, initial vertical = down, color = gold.

Starting 3: scale direction = forward, rhythm = 2, initial vertical = up, color = royalblue.

Starting 7: scale direction = forward, rhythm = 6, initial vertical = up, color = green.

ODD Waves

Starting 2: scale direction = forward, rhythm = 5, initial vertical = up, color = salmon.


EVEN Tone 3 with 2 wavelength/s counted.
phi(wavelengths multiplied)/wavelengths added = 0.61804697156984*21/10 = 1.2978986402967
ODD Tone 3 with 2 wavelength/s counted.
Half-wavelength for rhythm 5 is 6.
phi(wavelengths multiplied)/wavelengths added = 0.61804697156984*6/6 = 0.61804697156984

ODD/EVEN: Differences and Harmonics

These increment calculations show the relationships of the numbers in the grid by relating them to the ones in front of them (forward) and behind them (backwards) using the "tone" value as the base in the numbering system.


The diagonal increments still go down the row, but show the relationships between the number and the one diagonally above (forward) it and below it (backward).


The bold letters at the end of each row represent the Lambdona Notes that the ratios the repeating increments create.


Row

Forward (Odd/Even) (x,y)|(x+1,y)

As alluded to above, if you look at the number grid below, what I have noticed is that I can usually find 'vortex activity' starting and ending with rows that oscillate between '0' and another integer. So in this section, the vortex arrays are between "zero" and "infinity". In addition, between these rows, it seems to be important to have the intervals mirror one another as you move towards the center.

Row 1: 414141414141414141414C
Row 2: 232323232323232323232F
Row 3: 050505050505050505050zero
Row 4: 979797979797979797979E
Row 5: 797979797979797979797Ab
Row 6: 505050505050505050505infinity
Row 7: 323232323232323232323G
Row 8: 141414141414141414141C
Row 9: 10610610610610610610610610610610A
Row 10: 888888888888888888888C
Row 11: 6106106106106106106106106106106Eb
Row 12: 414141414141414141414C
Row 13: 232323232323232323232F
Row 14: 050505050505050505050zero
Row 15: 979797979797979797979E
Row 16: 797979797979797979797Ab

Backward (Odd/Even) (x,y)|(x-1,y)

Row 1: 7107107107107107107107107107107Gb
Row 2: 989898989898989898989D
Row 3: 060606060606060606060zero
Row 4: 242424242424242424242C
Row 5: 424242424242424242424C
Row 6: 606060606060606060606infinity
Row 7: 898989898989898989898Bb
Row 8: 10710710710710710710710710710710Gb
Row 9: 151515151515151515151Ab
Row 10: 333333333333333333333C
Row 11: 515151515151515151515E
Row 12: 7107107107107107107107107107107Gb
Row 13: 989898989898989898989D
Row 14: 060606060606060606060zero
Row 15: 242424242424242424242C
Row 16: 424242424242424242424C

Right to Left Diagonals across a Row

Forward (Odd/Even) (x,y)|(x+1,y-1)

RL Row 1: 323232323232323232323G
RL Row 2: 141414141414141414141C
RL Row 3: 10610610610610610610610610610610A
RL Row 4: 888888888888888888888C
RL Row 5: 6106106106106106106106106106106Eb
RL Row 6: 414141414141414141414C
RL Row 7: 232323232323232323232F
RL Row 8: 050505050505050505050zero
RL Row 9: 979797979797979797979E
RL Row 10: 797979797979797979797Ab
RL Row 11: 505050505050505050505infinity
RL Row 12: 323232323232323232323G
RL Row 13: 141414141414141414141C
RL Row 14: 10610610610610610610610610610610A
RL Row 15: 888888888888888888888C

Backward (Odd/Even) (x,y)|(x-1,y+1)

RL Row 1: 898989898989898989898Bb
RL Row 2: 10710710710710710710710710710710Gb
RL Row 3: 151515151515151515151Ab
RL Row 4: 333333333333333333333C
RL Row 5: 515151515151515151515E
RL Row 6: 7107107107107107107107107107107Gb
RL Row 7: 989898989898989898989D
RL Row 8: 060606060606060606060zero
RL Row 9: 242424242424242424242C
RL Row 10: 424242424242424242424C
RL Row 11: 606060606060606060606infinity
RL Row 12: 898989898989898989898Bb
RL Row 13: 10710710710710710710710710710710Gb
RL Row 14: 151515151515151515151Ab
RL Row 15: 333333333333333333333C

Left to Right Diagonals across a Row

Forward (Odd/Even) (x,y)|(x+1,y+1)

LR Row 1: 323232323232323232323G
LR Row 2: 141414141414141414141C
LR Row 3: 10610610610610610610610610610610A
LR Row 4: 888888888888888888888C
LR Row 5: 6106106106106106106106106106106Eb
LR Row 6: 414141414141414141414C
LR Row 7: 232323232323232323232F
LR Row 8: 050505050505050505050zero
LR Row 9: 979797979797979797979E
LR Row 10: 797979797979797979797Ab
LR Row 11: 505050505050505050505infinity
LR Row 12: 323232323232323232323G
LR Row 13: 141414141414141414141C
LR Row 14: 10610610610610610610610610610610A
LR Row 15: 888888888888888888888C

Backward (Odd/Even) (x,y)|(x-1,y-1)

LR Row 1: 898989898989898989898Bb
LR Row 2: 10710710710710710710710710710710Gb
LR Row 3: 151515151515151515151Ab
LR Row 4: 333333333333333333333C
LR Row 5: 515151515151515151515E
LR Row 6: 7107107107107107107107107107107Gb
LR Row 7: 989898989898989898989D
LR Row 8: 060606060606060606060zero
LR Row 9: 242424242424242424242C
LR Row 10: 424242424242424242424C
LR Row 11: 606060606060606060606infinity
LR Row 12: 898989898989898989898Bb
LR Row 13: 10710710710710710710710710710710Gb
LR Row 14: 151515151515151515151Ab
LR Row 15: 333333333333333333333C


PRIMES: Differences and Harmonics

The bold letters at the end of each row represent the Lambdona Notes that the ratios of repeating increment_prime_original create.


Row

Forward (Primes) (x,y)|(x+1,y)

Row 1: 323232323232323232323G
Row 2: 141414141414141414141C
Row 3: 10610610610610610610610610610610A
Row 4: 888888888888888888888C
Row 5: 6106106106106106106106106106106Eb
Row 6: 414141414141414141414C
Row 7: 232323232323232323232F
Row 8: 050505050505050505050zero
Row 9: 979797979797979797979E
Row 10: 797979797979797979797Ab
Row 11: 505050505050505050505infinity
Row 12: 323232323232323232323G
Row 13: 141414141414141414141C
Row 14: 10610610610610610610610610610610A
Row 15: 888888888888888888888C

Backward (Primes) (x,y)|(x-1,y)

Row 1: 898989898989898989898Bb
Row 2: 10710710710710710710710710710710Gb
Row 3: 151515151515151515151Ab
Row 4: 333333333333333333333C
Row 5: 515151515151515151515E
Row 6: 7107107107107107107107107107107Gb
Row 7: 989898989898989898989D
Row 8: 060606060606060606060zero
Row 9: 242424242424242424242C
Row 10: 424242424242424242424C
Row 11: 606060606060606060606infinity
Row 12: 898989898989898989898Bb
Row 13: 10710710710710710710710710710710Gb
Row 14: 151515151515151515151Ab
Row 15: 333333333333333333333C

Right to Left Diagonals across a Row

Forward (Primes) (x,y)|(x+1,y-1)

RL Row 1: 323232323232323232323G
RL Row 2: 141414141414141414141C
RL Row 3: 10610610610610610610610610610610A
RL Row 4: 888888888888888888888C
RL Row 5: 6106106106106106106106106106106Eb
RL Row 6: 414141414141414141414C
RL Row 7: 232323232323232323232F
RL Row 8: 050505050505050505050zero
RL Row 9: 979797979797979797979E
RL Row 10: 797979797979797979797Ab
RL Row 11: 505050505050505050505infinity
RL Row 12: 323232323232323232323G
RL Row 13: 141414141414141414141C
RL Row 14: 10610610610610610610610610610610A
RL Row 15: 888888888888888888888C

Backward (Primes) (x,y)|(x-1,y+1)

RL Row 1: 898989898989898989898Bb
RL Row 2: 10710710710710710710710710710710Gb
RL Row 3: 151515151515151515151Ab
RL Row 4: 333333333333333333333C
RL Row 5: 515151515151515151515E
RL Row 6: 7107107107107107107107107107107Gb
RL Row 7: 989898989898989898989D
RL Row 8: 060606060606060606060zero
RL Row 9: 242424242424242424242C
RL Row 10: 424242424242424242424C
RL Row 11: 606060606060606060606infinity
RL Row 12: 898989898989898989898Bb
RL Row 13: 10710710710710710710710710710710Gb
RL Row 14: 151515151515151515151Ab
RL Row 15: 333333333333333333333C

Left to Right Diagonals across a Row

Forward (Odd/Even) (x,y)|(x+1,y+1)

LR Row 1: 414141414141414141414C
LR Row 2: 232323232323232323232F
LR Row 3: 050505050505050505050zero
LR Row 4: 979797979797979797979E
LR Row 5: 797979797979797979797Ab
LR Row 6: 505050505050505050505infinity
LR Row 7: 323232323232323232323G
LR Row 8: 141414141414141414141C
LR Row 9: 10610610610610610610610610610610A
LR Row 10: 888888888888888888888C
LR Row 11: 6106106106106106106106106106106Eb
LR Row 12: 414141414141414141414C
LR Row 13: 232323232323232323232F
LR Row 14: 050505050505050505050zero
LR Row 15: 979797979797979797979E
LR Row 16: 797979797979797979797Ab

Backward (Primes) (x,y)|(x-1,y-1)

LR Row 1: 7107107107107107107107107107107Gb
LR Row 2: 989898989898989898989D
LR Row 3: 060606060606060606060zero
LR Row 4: 242424242424242424242C
LR Row 5: 424242424242424242424C
LR Row 6: 606060606060606060606infinity
LR Row 7: 898989898989898989898Bb
LR Row 8: 10710710710710710710710710710710Gb
LR Row 9: 151515151515151515151Ab
LR Row 10: 333333333333333333333C
LR Row 11: 515151515151515151515E
LR Row 12: 7107107107107107107107107107107Gb
LR Row 13: 989898989898989898989D
LR Row 14: 060606060606060606060zero
LR Row 15: 242424242424242424242C
LR Row 16: 424242424242424242424C


ODD+EVEN: Derivatives

The bold letters at the end of each row represent the Lambdona Notes that the ratios of repeating increments create.


ODD+EVEN: Original Matrix


Row 1: 7107107107107107107107107107107Gb
Row 2: 989898989898989898989D
Row 3: 060606060606060606060zero
Row 4: 242424242424242424242C
Row 5: 424242424242424242424C
Row 6: 606060606060606060606infinity
Row 7: 898989898989898989898Bb
Row 8: 10710710710710710710710710710710Gb
Row 9: 151515151515151515151Ab
Row 10: 333333333333333333333C
Row 11: 515151515151515151515E
Row 12: 7107107107107107107107107107107Gb
Row 13: 989898989898989898989D
Row 14: 060606060606060606060zero
Row 15: 242424242424242424242C
Row 16: 424242424242424242424C

First Derivative (Odd/Even)

Row 1: 83838383838383838383F
Row 2: 110110110110110110110110110110Ab
Row 3: 56565656565656565656A
Row 4: 92929292929292929292D
Row 5: 29292929292929292929Bb
Row 6: 65656565656565656565Eb
Row 7: 101101101101101101101101101101E
Row 8: 38383838383838383838G
Row 9: 74747474747474747474Bb
Row 10: 00000000000000000000
Row 11: 47474747474747474747D
Row 12: 83838383838383838383F
Row 13: 110110110110110110110110110110Ab
Row 14: 56565656565656565656A
Row 15: 92929292929292929292D
Row 16: 29292929292929292929Bb

Second Derivative (Odd/Even)

Row 1: 5656565656565656565A
Row 2: 2929292929292929292Bb
Row 3: 10110110110110110110110110110E
Row 4: 7474747474747474747Bb
Row 5: 4747474747474747474D
Row 6: 1101101101101101101101101101Ab
Row 7: 9292929292929292929D
Row 8: 6565656565656565656Eb
Row 9: 3838383838383838383G
Row 10: 0000000000000000000
Row 11: 8383838383838383838F
Row 12: 5656565656565656565A
Row 13: 2929292929292929292Bb
Row 14: 10110110110110110110110110110E
Row 15: 7474747474747474747Bb
Row 16: 4747474747474747474D



PRIMES: Derivatives

The bold letters at the end of each row represent the Lambdona Notes that the ratios of repeating increments create.


PRIMES: Original Matrix


Row 1: 7107107107107107107107107107107Gb
Row 2: 989898989898989898989D
Row 3: 060606060606060606060zero
Row 4: 242424242424242424242C
Row 5: 424242424242424242424C
Row 6: 606060606060606060606infinity
Row 7: 898989898989898989898Bb
Row 8: 10710710710710710710710710710710Gb
Row 9: 151515151515151515151Ab
Row 10: 333333333333333333333C
Row 11: 515151515151515151515E
Row 12: 7107107107107107107107107107107Gb
Row 13: 989898989898989898989D
Row 14: 060606060606060606060zero
Row 15: 242424242424242424242C
Row 16: 424242424242424242424C

First Derivative (Primes)

Row 1: 83838383838383838383F
Row 2: 110110110110110110110110110110Ab
Row 3: 56565656565656565656A
Row 4: 92929292929292929292D
Row 5: 29292929292929292929Bb
Row 6: 65656565656565656565Eb
Row 7: 101101101101101101101101101101E
Row 8: 38383838383838383838G
Row 9: 74747474747474747474Bb
Row 10: 00000000000000000000
Row 11: 47474747474747474747D
Row 12: 83838383838383838383F
Row 13: 110110110110110110110110110110Ab
Row 14: 56565656565656565656A
Row 15: 92929292929292929292D
Row 16: 29292929292929292929Bb

Second Derivative (Primes)

Row 1: 5656565656565656565A
Row 2: 2929292929292929292Bb
Row 3: 10110110110110110110110110110E
Row 4: 7474747474747474747Bb
Row 5: 4747474747474747474D
Row 6: 1101101101101101101101101101Ab
Row 7: 9292929292929292929D
Row 8: 6565656565656565656Eb
Row 9: 3838383838383838383G
Row 10: 0000000000000000000
Row 11: 8383838383838383838F
Row 12: 5656565656565656565A
Row 13: 2929292929292929292Bb
Row 14: 10110110110110110110110110110E
Row 15: 7474747474747474747Bb
Row 16: 4747474747474747474D

PRIMARY MATRIX DERIVATIVES ODD+EVEN: Derivatives

The bold letters at the end of each row represent the Lambdona Notes that the ratios of repeating PRIMARY MATRIX increments create.


PRIME (Odd/Even): Original Matrix


Row 1: 6666666666C
Row 2: 6666666666C
Row 3: 6666666666C
Row 4: 6666666666C
Row 5: 6666666666C
Row 6: 6666666666C
Row 7: 6666666666C
Row 8: 6666666666C
Row 9: 6666666666C
Row 10: 6666666666C
Row 11: 6666666666C
Row 12: 6666666666C
Row 13: 6666666666C
Row 14: 6666666666C
Row 15: 6666666666C
Row 16: 6666666666C



PRIMARY MATRIX DERIVATIVES PRIMES: Derivatives

The bold letters at the end of each row represent the Lambdona Notes that the ratios of repeating PRIMARY MATRIX increments create.


PRIMARY MATRIX: (Primes) Original Matrix


Row 1: 6666666666C
Row 2: 6666666666C
Row 3: 6666666666C
Row 4: 6666666666C
Row 5: 6666666666C
Row 6: 6666666666C
Row 7: 6666666666C
Row 8: 6666666666C
Row 9: 6666666666C
Row 10: 6666666666C
Row 11: 6666666666C
Row 12: 6666666666C
Row 13: 6666666666C
Row 14: 6666666666C
Row 15: 6666666666C
Row 16: 6666666666C