JelloMatrix Result

If this looks like the beginning of a new math, that is because it is. It's actually a very old math reborn.

Welcome. Contact me directly at ana at jellobrain dot com if you'd like to talk about it.

This tool takes two numbers and creates a matrix grid with them, and then performs all sorts of calculations including harmonics and derivative value shifts between numbers in their numerical contexts (topologies).

In addition and perhaps more specifically, this tool evaluates matrices spliced with inverse (upside down) copies of themselves, and looks for waveforms in the resulting numerical topologies with the following characteristics:

  1. Bands of numbers in the spliced matrix with equal values adjacent to one another...
  2. which connect in predictable sine wave forms with one another...
  3. following the order of a scale which is determined by the top row of values in the unspliced and native "seed" matrix...
  4. rhythms that are even numbered change polarity at the crests of the waveforms, while odd rhythms change polarity at each shift in position.
  5. and harmonically cycle between zero and infinity.

Aspects of that set of characteristics will appear even if the full pattern is not present in unison.

In addition, the patterns seem to continue to contain these inherent characheristics even when the two polar grids are spliced in a way that they are offset.

Following the grid drawings will lead you through the story of how they are created, and enterring a value in the form to offset the grids will generate an offset grid.

This is where we see that even if the grids are offset vertically from one another, they still have an opportunity to be scale active and seem to function like Moire patterns in that sense.
This is where we modify the base frequency of the middle C value in the Lambdoma/Frequency charts.

You have scales!



The Original Matrix


1841173106295
2951841173106
3106295184117
4117310629518
5184117310629
6295184117310
7310629518411
8411731062951
9518411731062
1062951841173
1173106295184
1841173106295
2951841173106
3106295184117
4117310629518
5184117310629
6295184117310
7310629518411



Scale Pattern:

Whether you look at each row individually, or look at each diagonal row (in forward or backward 'slash' directions) you will notice that the order of numbers is consistent on every row (or each direction of diagonal rows) and that only the starting number differs from row to row. I refer to this as a 'scale'. If the scale were to be played in a circle consisting of the numbers of the first 'tone' value, the shape formed would be the same regardless of which number you start with.

  


HORIZONTAL SCALE [<->] (-4/4): 1, 8, 4, 11, 7, 3, 10, 6, 2, 9, 5,
FORWARD SLASH DIAGONAL SCALE [/] (6/5): 1, 7, 2, 8, 3, 9, 4, 10, 5, 11, 6,
BACKWARD SLASH DIAGONAL SCALE [\] (8/3): 1, 9, 6, 3, 11, 8, 5, 2, 10, 7, 4, ...





The Basic Orientation of the Spliced Matrix

Why splice the initial matrix? This started out as a hunch, but also following the work of Jose Arguilles who inspired this up to a point. But also the work of Mark Rothko and Randy Powell with their ABHA torus to which the matrix forms here bare some relation but which diverge from what Randy and Mark are doing in important ways. In my mind, splicing the matrix creates an architecture that reminded me of a battery. I do not think this analogy is off-base. When we combine this notion while also looking for the patterns in the 'scales' found in the original matrix, we see emergent patterns and pathways. The next progression of images takes you through a categorization of some of those patterns.

17834101167239105612894511
26925915814811471137103610
35101682491157138104611279
44111177331010662299551188
53110864211975311086421197
62299551188441111773310106
71381046112793510168249115
81147113710361026925915814
91056128945111783410116723
10965219854111874311107632
11874311107632109652198541
17834101167239105612894511
26925915814811471137103610
35101682491157138104611279
44111177331010662299551188
53110864211975311086421197
62299551188441111773310106
71381046112793510168249115

HIGHLIGHTING PRIMES: The Spliced Matrix

17834101167239105612894511
26925915814811471137103610
35101682491157138104611279
44111177331010662299551188
53110864211975311086421197
62299551188441111773310106
71381046112793510168249115
81147113710361026925915814
91056128945111783410116723
10965219854111874311107632
11874311107632109652198541
17834101167239105612894511
26925915814811471137103610
35101682491157138104611279
44111177331010662299551188
53110864211975311086421197
62299551188441111773310106
71381046112793510168249115

HIGHLIGHTING EVEN+ODD: The Spliced Matrix

17834101167239105612894511
26925915814811471137103610
35101682491157138104611279
44111177331010662299551188
53110864211975311086421197
62299551188441111773310106
71381046112793510168249115
81147113710361026925915814
91056128945111783410116723
10965219854111874311107632
11874311107632109652198541
17834101167239105612894511
26925915814811471137103610
35101682491157138104611279
44111177331010662299551188
53110864211975311086421197
62299551188441111773310106
71381046112793510168249115

Interstingly enough, the sections which seem to hold information about the vortec/ies they reflect seem to fall most often in the middle of the sine waves created by what appear to be very different "environments" or "gradients" between higher frequency oscillations of even and odd numbers (you might need to squint your eyes to see them), They are the waves defined by the more or less frequent oscillatory patterns taken as a whole. More about this in the "Rows" calculations in the "Increments" section below.


HORIZONTAL SCALED WAVES


WAVE FORM POLE SHIFT: Highlighting the adjacent equal values.

17834101167239105612894511
26925915814811471137103610
35101682491157138104611279
44111177331010662299551188
53110864211975311086421197
62299551188441111773310106
71381046112793510168249115
81147113710361026925915814
91056128945111783410116723
10965219854111874311107632
11874311107632109652198541
17834101167239105612894511
26925915814811471137103610
35101682491157138104611279
44111177331010662299551188
53110864211975311086421197
62299551188441111773310106
71381046112793510168249115



HORIZONTAL SCALE [<->] (-4/4): 1, 8, 4, 11, 7, 3, 10, 6, 2, 9, 5,


WAVE FORM SCALES: The Waveform Scales: EVEN Rhythms

17834101167239105612894511
26925915814811471137103610
35101682491157138104611279
44111177331010662299551188
53110864211975311086421197
62299551188441111773310106
71381046112793510168249115
81147113710361026925915814
91056128945111783410116723
10965219854111874311107632
11874311107632109652198541
17834101167239105612894511
26925915814811471137103610
35101682491157138104611279
44111177331010662299551188
53110864211975311086421197
62299551188441111773310106
71381046112793510168249115


WAVE FORM SCALES: The Waveform Scales: ODD Rhythms

17834101167239105612894511
26925915814811471137103610
35101682491157138104611279
44111177331010662299551188
53110864211975311086421197
62299551188441111773310106
71381046112793510168249115
81147113710361026925915814
91056128945111783410116723
10965219854111874311107632
11874311107632109652198541
17834101167239105612894511
26925915814811471137103610
35101682491157138104611279
44111177331010662299551188
53110864211975311086421197
62299551188441111773310106
71381046112793510168249115


Scale Pattern:

This tool is meant as a proof of concept and not as a complete set of waveforms that are possible (although I am working on it!).


RED = Start of wave.

EVEN Waves

Starting 4: scale direction = reversed, rhythm = 4, initial vertical = up, color = plum.

Starting 4: scale direction = forward, rhythm = 8, initial vertical = up, color = seagreen.

Starting 4: scale direction = reversed, rhythm = 4, initial vertical = up, color = dodgerblue.

Starting 4: scale direction = forward, rhythm = 8, initial vertical = up, color = indianred.

ODD Waves

Starting 4: scale direction = reversed, rhythm = 3, initial vertical = down, color = powderblue.

Starting 4: scale direction = forward, rhythm = 7, initial vertical = down, color = orange.

Starting 4: scale direction = reversed, rhythm = 3, initial vertical = down, color = darkorange.

Starting 4: scale direction = forward, rhythm = 7, initial vertical = down, color = steelblue.




FORWARD BACKSLASH SCALED WAVES




FORWARD SLASH DIAGONAL SCALE [/] (6/5): 1, 7, 2, 8, 3, 9, 4, 10, 5, 11, 6,


WAVE FORM SCALES: The Waveform Scales: EVEN Rhythms

17834101167239105612894511
26925915814811471137103610
35101682491157138104611279
44111177331010662299551188
53110864211975311086421197
62299551188441111773310106
71381046112793510168249115
81147113710361026925915814
91056128945111783410116723
10965219854111874311107632
11874311107632109652198541
17834101167239105612894511
26925915814811471137103610
35101682491157138104611279
44111177331010662299551188
53110864211975311086421197
62299551188441111773310106
71381046112793510168249115


Scale Pattern:

This tool is meant as a proof of concept and not as a complete set of waveforms that are possible (although I am working on it!).


RED = Start of wave.

EVEN Waves

Starting 4: scale direction = forward, rhythm = 2, initial vertical = down, color = powderblue.

Starting 4: scale direction = reversed, rhythm = 8, initial vertical = down, color = orange.

Starting 4: scale direction = forward, rhythm = 2, initial vertical = down, color = plum.

Starting 4: scale direction = reversed, rhythm = 8, initial vertical = down, color = seagreen.




BACKWARD BACKSLASH SCALED WAVES




BACKWARD SLASH DIAGONAL SCALE [\] (8/3): 1, 9, 6, 3, 11, 8, 5, 2, 10, 7, 4,


WAVE FORM SCALES: The Waveform Scales: EVEN Rhythms

17834101167239105612894511
26925915814811471137103610
35101682491157138104611279
44111177331010662299551188
53110864211975311086421197
62299551188441111773310106
71381046112793510168249115
81147113710361026925915814
91056128945111783410116723
10965219854111874311107632
11874311107632109652198541
17834101167239105612894511
26925915814811471137103610
35101682491157138104611279
44111177331010662299551188
53110864211975311086421197
62299551188441111773310106
71381046112793510168249115


WAVE FORM SCALES: The Waveform Scales: ODD Rhythms

17834101167239105612894511
26925915814811471137103610
35101682491157138104611279
44111177331010662299551188
53110864211975311086421197
62299551188441111773310106
71381046112793510168249115
81147113710361026925915814
91056128945111783410116723
10965219854111874311107632
11874311107632109652198541
17834101167239105612894511
26925915814811471137103610
35101682491157138104611279
44111177331010662299551188
53110864211975311086421197
62299551188441111773310106
71381046112793510168249115


Scale Pattern:

This tool is meant as a proof of concept and not as a complete set of waveforms that are possible (although I am working on it!).


RED = Start of wave.

EVEN Waves

Starting 4: scale direction = forward, rhythm = 2, initial vertical = up, color = plum.

Starting 4: scale direction = reversed, rhythm = 10, initial vertical = up, color = seagreen.

Starting 4: scale direction = forward, rhythm = 2, initial vertical = up, color = dodgerblue.

Starting 4: scale direction = reversed, rhythm = 10, initial vertical = up, color = indianred.

ODD Waves

Starting 4: scale direction = forward, rhythm = 1, initial vertical = down, color = powderblue.

Starting 4: scale direction = reversed, rhythm = 9, initial vertical = down, color = orange.

Starting 4: scale direction = forward, rhythm = 1, initial vertical = down, color = darkorange.

Starting 4: scale direction = reversed, rhythm = 9, initial vertical = down, color = steelblue.



ODD/EVEN: Differences and Harmonics

These increment calculations show the relationships of the numbers in the grid by relating them to the ones in front of them (forward) and behind them (backwards) using the "tone" value as the base in the numbering system.


The diagonal increments still go down the row, but show the relationships between the number and the one diagonally above (forward) it and below it (backward).


The bold letters at the end of each row represent the Lambdona Notes that the ratios the repeating increments create.


Row

Forward (Odd/Even) (x,y)|(x+1,y)

As alluded to above, if you look at the number grid below, what I have noticed is that I can usually find 'vortex activity' starting and ending with rows that oscillate between '0' and another integer. So in this section, the vortex arrays are between "zero" and "infinity". In addition, between these rows, it seems to be important to have the intervals mirror one another as you move towards the center.

Row 1: 616161616161616161616G6+1=7
Row 2: 434343434343434343434F4+3=7
Row 3: 252525252525252525252G#2+5=7
Row 4: 070707070707070707070zero0+7=7
Row 5: 999999999999999999999C9+9=18
Row 6: 707070707070707070707infinity7+0=7
Row 7: 525252525252525252525E5+2=7
Row 8: 343434343434343434343G3+4=7
Row 9: 161616161616161616161F1+6=7
Row 10: 10810810810810810810810810810810E10+8=18
Row 11: 8108108108108108108108108108108G#8+10=18
Row 12: 616161616161616161616G6+1=7
Row 13: 434343434343434343434F4+3=7
Row 14: 252525252525252525252G#2+5=7
Row 15: 070707070707070707070zero0+7=7
Row 16: 999999999999999999999C9+9=18
Row 17: 707070707070707070707infinity7+0=7
Row 18: 525252525252525252525E5+2=7

Order of frequencies: based on a 264Hz baseline or "C"

  1. 1584Hz
  2. 352Hz
  3. 105.6Hz
  4. 1.0E-7Hz
  5. 264Hz
  6. 10000000Hz
  7. 660Hz
  8. 198Hz
  9. 44Hz
  10. 330Hz
  11. 211.2Hz
  12. 1584Hz
  13. 352Hz
  14. 105.6Hz
  15. 1.0E-7Hz
  16. 264Hz
  17. 10000000Hz
  18. 660Hz


Backward (Odd/Even) (x,y)|(x-1,y)

Row 1: 5105105105105105105105105105105C5+10=15
Row 2: 787878787878787878787Bb7+8=15
Row 3: 969696969696969696969G9+6=15
Row 4: 040404040404040404040zero0+4=4
Row 5: 222222222222222222222C2+2=4
Row 6: 404040404040404040404infinity4+0=4
Row 7: 696969696969696969696F6+9=15
Row 8: 878787878787878787878D8+7=15
Row 9: 10510510510510510510510510510510C10+5=15
Row 10: 131313131313131313131F1+3=4
Row 11: 313131313131313131313G3+1=4
Row 12: 5105105105105105105105105105105C5+10=15
Row 13: 787878787878787878787Bb7+8=15
Row 14: 969696969696969696969G9+6=15
Row 15: 040404040404040404040zero0+4=4
Row 16: 222222222222222222222C2+2=4
Row 17: 404040404040404040404infinity4+0=4
Row 18: 696969696969696969696F6+9=15

Order of frequencies: based on a 264Hz baseline or "C"

  1. 132Hz
  2. 231Hz
  3. 396Hz
  4. 1.0E-7Hz
  5. 264Hz
  6. 10000000Hz
  7. 176Hz
  8. 301.71428571429Hz
  9. 528Hz
  10. 88Hz
  11. 792Hz
  12. 132Hz
  13. 231Hz
  14. 396Hz
  15. 1.0E-7Hz
  16. 264Hz
  17. 10000000Hz
  18. 176Hz


Lambdoma Keyboard (Barbara Hero) colored in with the locally determined frequency , and the letter note values based on a 256Hz C.

012345678910111213141516
00/0
-
-
0/1
-
-
0/2
-
-
0/3
-
-
0/4
0Hz
zero:f3
0/5
-
-
0/6
-
-
0/7
0Hz
zero:b3
0/8
-
-
0/9
-
-
0/10
-
-
0/11
-
-
0/12
-
-
0/13
-
-
0/14
-
-
0/15
-
-
0/16
-
-
11/0
-
-
1/1
-
-
1/2
-
-
1/3
88Hz
F:f9
1/4
-
-
1/5
-
-
1/6
44Hz
F:b8
1/7
-
-
1/8
-
-
1/9
-
-
1/10
-
-
1/11
-
-
1/12
-
-
1/13
-
-
1/14
-
-
1/15
-
-
1/16
-
-
22/0
-
-
2/1
-
-
2/2
264Hz
C:f4
2/3
-
-
2/4
-
-
2/5
105Hz
G#:b2
2/6
-
-
2/7
-
-
2/8
-
-
2/9
-
-
2/10
-
-
2/11
-
-
2/12
-
-
2/13
-
-
2/14
-
-
2/15
-
-
2/16
-
-
33/0
-
-
3/1
792Hz
G:f10
3/2
-
-
3/3
-
-
3/4
198Hz
G:b7
3/5
-
-
3/6
-
-
3/7
-
-
3/8
-
-
3/9
-
-
3/10
-
-
3/11
-
-
3/12
-
-
3/13
-
-
3/14
-
-
3/15
-
-
3/16
-
-
44/0
10000000Hz
infinity:f5
4/1
-
-
4/2
-
-
4/3
352Hz
F:b1
4/4
-
-
4/5
-
-
4/6
-
-
4/7
-
-
4/8
-
-
4/9
-
-
4/10
-
-
4/11
-
-
4/12
-
-
4/13
-
-
4/14
-
-
4/15
-
-
4/16
-
-
55/0
-
-
5/1
-
-
5/2
660Hz
E:b6
5/3
-
-
5/4
-
-
5/5
-
-
5/6
-
-
5/7
-
-
5/8
-
-
5/9
-
-
5/10
132Hz
C:f0
5/11
-
-
5/12
-
-
5/13
-
-
5/14
-
-
5/15
-
-
5/16
-
-
66/0
-
-
6/1
1584Hz
G:b0
6/2
-
-
6/3
-
-
6/4
-
-
6/5
-
-
6/6
-
-
6/7
-
-
6/8
-
-
6/9
176Hz
F:f6
6/10
-
-
6/11
-
-
6/12
-
-
6/13
-
-
6/14
-
-
6/15
-
-
6/16
-
-
77/0
10000000Hz
infinity:b5
7/1
-
-
7/2
-
-
7/3
-
-
7/4
-
-
7/5
-
-
7/6
-
-
7/7
-
-
7/8
231Hz
Bb:f1
7/9
-
-
7/10
-
-
7/11
-
-
7/12
-
-
7/13
-
-
7/14
-
-
7/15
-
-
7/16
-
-
88/0
-
-
8/1
-
-
8/2
-
-
8/3
-
-
8/4
-
-
8/5
-
-
8/6
-
-
8/7
301Hz
D:f7
8/8
-
-
8/9
-
-
8/10
211Hz
G#:b10
8/11
-
-
8/12
-
-
8/13
-
-
8/14
-
-
8/15
-
-
8/16
-
-
99/0
-
-
9/1
-
-
9/2
-
-
9/3
-
-
9/4
-
-
9/5
-
-
9/6
396Hz
G:f2
9/7
-
-
9/8
-
-
9/9
264Hz
C:b4
9/10
-
-
9/11
-
-
9/12
-
-
9/13
-
-
9/14
-
-
9/15
-
-
9/16
-
-
1010/0
-
-
10/1
-
-
10/2
-
-
10/3
-
-
10/4
-
-
10/5
528Hz
C:f8
10/6
-
-
10/7
-
-
10/8
330Hz
E:b9
10/9
-
-
10/10
-
-
10/11
-
-
10/12
-
-
10/13
-
-
10/14
-
-
10/15
-
-
10/16
-
-
1111/0
-
-
11/1
-
-
11/2
-
-
11/3
-
-
11/4
-
-
11/5
-
-
11/6
-
-
11/7
-
-
11/8
-
-
11/9
-
-
11/10
-
-
11/11
-
-
11/12
-
-
11/13
-
-
11/14
-
-
11/15
-
-
11/16
-
-
1212/0
-
-
12/1
-
-
12/2
-
-
12/3
-
-
12/4
-
-
12/5
-
-
12/6
-
-
12/7
-
-
12/8
-
-
12/9
-
-
12/10
-
-
12/11
-
-
12/12
-
-
12/13
-
-
12/14
-
-
12/15
-
-
12/16
-
-
1313/0
-
-
13/1
-
-
13/2
-
-
13/3
-
-
13/4
-
-
13/5
-
-
13/6
-
-
13/7
-
-
13/8
-
-
13/9
-
-
13/10
-
-
13/11
-
-
13/12
-
-
13/13
-
-
13/14
-
-
13/15
-
-
13/16
-
-
1414/0
-
-
14/1
-
-
14/2
-
-
14/3
-
-
14/4
-
-
14/5
-
-
14/6
-
-
14/7
-
-
14/8
-
-
14/9
-
-
14/10
-
-
14/11
-
-
14/12
-
-
14/13
-
-
14/14
-
-
14/15
-
-
14/16
-
-
1515/0
-
-
15/1
-
-
15/2
-
-
15/3
-
-
15/4
-
-
15/5
-
-
15/6
-
-
15/7
-
-
15/8
-
-
15/9
-
-
15/10
-
-
15/11
-
-
15/12
-
-
15/13
-
-
15/14
-
-
15/15
-
-
15/16
-
-
1616/0
-
-
16/1
-
-
16/2
-
-
16/3
-
-
16/4
-
-
16/5
-
-
16/6
-
-
16/7
-
-
16/8
-
-
16/9
-
-
16/10
-
-
16/11
-
-
16/12
-
-
16/13
-
-
16/14
-
-
16/15
-
-
16/16
-
-

Right to Left Diagonals across a Row

Forward (Odd/Even) (x,y)|(x+1,y-1)

RL Row 1: 525252525252525252525E5+2=7
RL Row 2: 343434343434343434343G3+4=7
RL Row 3: 161616161616161616161F1+6=7
RL Row 4: 10810810810810810810810810810810E10+8=18
RL Row 5: 8108108108108108108108108108108G#8+10=18
RL Row 6: 616161616161616161616G6+1=7
RL Row 7: 434343434343434343434F4+3=7
RL Row 8: 252525252525252525252G#2+5=7
RL Row 9: 070707070707070707070zero0+7=7
RL Row 10: 999999999999999999999C9+9=18
RL Row 11: 707070707070707070707infinity7+0=7
RL Row 12: 525252525252525252525E5+2=7
RL Row 13: 343434343434343434343G3+4=7
RL Row 14: 161616161616161616161F1+6=7
RL Row 15: 10810810810810810810810810810810E10+8=18
RL Row 16: 8108108108108108108108108108108G#8+10=18
RL Row 17: 616161616161616161616G6+1=7

Order of frequencies: based on a 264Hz baseline or "C"

  1. 660Hz
  2. 198Hz
  3. 44Hz
  4. 330Hz
  5. 211.2Hz
  6. 1584Hz
  7. 352Hz
  8. 105.6Hz
  9. 1.0E-7Hz
  10. 264Hz
  11. 10000000Hz
  12. 660Hz
  13. 198Hz
  14. 44Hz
  15. 330Hz
  16. 211.2Hz
  17. 1584Hz


Backward (Odd/Even) (x,y)|(x-1,y+1)

RL Row 1: 696969696969696969696F6+9=15
RL Row 2: 878787878787878787878D8+7=15
RL Row 3: 10510510510510510510510510510510C10+5=15
RL Row 4: 131313131313131313131F1+3=4
RL Row 5: 313131313131313131313G3+1=4
RL Row 6: 5105105105105105105105105105105C5+10=15
RL Row 7: 787878787878787878787Bb7+8=15
RL Row 8: 969696969696969696969G9+6=15
RL Row 9: 040404040404040404040zero0+4=4
RL Row 10: 222222222222222222222C2+2=4
RL Row 11: 404040404040404040404infinity4+0=4
RL Row 12: 696969696969696969696F6+9=15
RL Row 13: 878787878787878787878D8+7=15
RL Row 14: 10510510510510510510510510510510C10+5=15
RL Row 15: 131313131313131313131F1+3=4
RL Row 16: 313131313131313131313G3+1=4
RL Row 17: 5105105105105105105105105105105C5+10=15

Order of frequencies: based on a 264Hz baseline or "C"

  1. 176Hz
  2. 301.71428571429Hz
  3. 528Hz
  4. 88Hz
  5. 792Hz
  6. 132Hz
  7. 231Hz
  8. 396Hz
  9. 1.0E-7Hz
  10. 264Hz
  11. 10000000Hz
  12. 176Hz
  13. 301.71428571429Hz
  14. 528Hz
  15. 88Hz
  16. 792Hz
  17. 132Hz


Lambdoma Keyboard (Barbara Hero) colored in with the locally determined frequency , and the letter note values based on a 256Hz C.

012345678910111213141516
00/0
-
-
0/1
-
-
0/2
-
-
0/3
-
-
0/4
0Hz
zero:f3
0/5
-
-
0/6
-
-
0/7
0Hz
zero:b3
0/8
-
-
0/9
-
-
0/10
-
-
0/11
-
-
0/12
-
-
0/13
-
-
0/14
-
-
0/15
-
-
0/16
-
-
11/0
-
-
1/1
-
-
1/2
-
-
1/3
88Hz
F:f9
1/4
-
-
1/5
-
-
1/6
44Hz
F:b8
1/7
-
-
1/8
-
-
1/9
-
-
1/10
-
-
1/11
-
-
1/12
-
-
1/13
-
-
1/14
-
-
1/15
-
-
1/16
-
-
22/0
-
-
2/1
-
-
2/2
264Hz
C:f4
2/3
-
-
2/4
-
-
2/5
105Hz
G#:b2
2/6
-
-
2/7
-
-
2/8
-
-
2/9
-
-
2/10
-
-
2/11
-
-
2/12
-
-
2/13
-
-
2/14
-
-
2/15
-
-
2/16
-
-
33/0
-
-
3/1
792Hz
G:f10
3/2
-
-
3/3
-
-
3/4
198Hz
G:b7
3/5
-
-
3/6
-
-
3/7
-
-
3/8
-
-
3/9
-
-
3/10
-
-
3/11
-
-
3/12
-
-
3/13
-
-
3/14
-
-
3/15
-
-
3/16
-
-
44/0
10000000Hz
infinity:f5
4/1
-
-
4/2
-
-
4/3
352Hz
F:b1
4/4
-
-
4/5
-
-
4/6
-
-
4/7
-
-
4/8
-
-
4/9
-
-
4/10
-
-
4/11
-
-
4/12
-
-
4/13
-
-
4/14
-
-
4/15
-
-
4/16
-
-
55/0
-
-
5/1
-
-
5/2
660Hz
E:b6
5/3
-
-
5/4
-
-
5/5
-
-
5/6
-
-
5/7
-
-
5/8
-
-
5/9
-
-
5/10
132Hz
C:f0
5/11
-
-
5/12
-
-
5/13
-
-
5/14
-
-
5/15
-
-
5/16
-
-
66/0
-
-
6/1
1584Hz
G:b0
6/2
-
-
6/3
-
-
6/4
-
-
6/5
-
-
6/6
-
-
6/7
-
-
6/8
-
-
6/9
176Hz
F:f6
6/10
-
-
6/11
-
-
6/12
-
-
6/13
-
-
6/14
-
-
6/15
-
-
6/16
-
-
77/0
10000000Hz
infinity:b5
7/1
-
-
7/2
-
-
7/3
-
-
7/4
-
-
7/5
-
-
7/6
-
-
7/7
-
-
7/8
231Hz
Bb:f1
7/9
-
-
7/10
-
-
7/11
-
-
7/12
-
-
7/13
-
-
7/14
-
-
7/15
-
-
7/16
-
-
88/0
-
-
8/1
-
-
8/2
-
-
8/3
-
-
8/4
-
-
8/5
-
-
8/6
-
-
8/7
301Hz
D:f7
8/8
-
-
8/9
-
-
8/10
211Hz
G#:b10
8/11
-
-
8/12
-
-
8/13
-
-
8/14
-
-
8/15
-
-
8/16
-
-
99/0
-
-
9/1
-
-
9/2
-
-
9/3
-
-
9/4
-
-
9/5
-
-
9/6
396Hz
G:f2
9/7
-
-
9/8
-
-
9/9
264Hz
C:b4
9/10
-
-
9/11
-
-
9/12
-
-
9/13
-
-
9/14
-
-
9/15
-
-
9/16
-
-
1010/0
-
-
10/1
-
-
10/2
-
-
10/3
-
-
10/4
-
-
10/5
528Hz
C:f8
10/6
-
-
10/7
-
-
10/8
330Hz
E:b9
10/9
-
-
10/10
-
-
10/11
-
-
10/12
-
-
10/13
-
-
10/14
-
-
10/15
-
-
10/16
-
-
1111/0
-
-
11/1
-
-
11/2
-
-
11/3
-
-
11/4
-
-
11/5
-
-
11/6
-
-
11/7
-
-
11/8
-
-
11/9
-
-
11/10
-
-
11/11
-
-
11/12
-
-
11/13
-
-
11/14
-
-
11/15
-
-
11/16
-
-
1212/0
-
-
12/1
-
-
12/2
-
-
12/3
-
-
12/4
-
-
12/5
-
-
12/6
-
-
12/7
-
-
12/8
-
-
12/9
-
-
12/10
-
-
12/11
-
-
12/12
-
-
12/13
-
-
12/14
-
-
12/15
-
-
12/16
-
-
1313/0
-
-
13/1
-
-
13/2
-
-
13/3
-
-
13/4
-
-
13/5
-
-
13/6
-
-
13/7
-
-
13/8
-
-
13/9
-
-
13/10
-
-
13/11
-
-
13/12
-
-
13/13
-
-
13/14
-
-
13/15
-
-
13/16
-
-
1414/0
-
-
14/1
-
-
14/2
-
-
14/3
-
-
14/4
-
-
14/5
-
-
14/6
-
-
14/7
-
-
14/8
-
-
14/9
-
-
14/10
-
-
14/11
-
-
14/12
-
-
14/13
-
-
14/14
-
-
14/15
-
-
14/16
-
-
1515/0
-
-
15/1
-
-
15/2
-
-
15/3
-
-
15/4
-
-
15/5
-
-
15/6
-
-
15/7
-
-
15/8
-
-
15/9
-
-
15/10
-
-
15/11
-
-
15/12
-
-
15/13
-
-
15/14
-
-
15/15
-
-
15/16
-
-
1616/0
-
-
16/1
-
-
16/2
-
-
16/3
-
-
16/4
-
-
16/5
-
-
16/6
-
-
16/7
-
-
16/8
-
-
16/9
-
-
16/10
-
-
16/11
-
-
16/12
-
-
16/13
-
-
16/14
-
-
16/15
-
-
16/16
-
-

Left to Right Diagonals across a Row

Forward (Odd/Even) (x,y)|(x+1,y+1)

LR Row 1: 525252525252525252525E5+2=7
LR Row 2: 343434343434343434343G3+4=7
LR Row 3: 161616161616161616161F1+6=7
LR Row 4: 10810810810810810810810810810810E10+8=18
LR Row 5: 8108108108108108108108108108108G#8+10=18
LR Row 6: 616161616161616161616G6+1=7
LR Row 7: 434343434343434343434F4+3=7
LR Row 8: 252525252525252525252G#2+5=7
LR Row 9: 070707070707070707070zero0+7=7
LR Row 10: 999999999999999999999C9+9=18
LR Row 11: 707070707070707070707infinity7+0=7
LR Row 12: 525252525252525252525E5+2=7
LR Row 13: 343434343434343434343G3+4=7
LR Row 14: 161616161616161616161F1+6=7
LR Row 15: 10810810810810810810810810810810E10+8=18
LR Row 16: 8108108108108108108108108108108G#8+10=18
LR Row 17: 616161616161616161616G6+1=7

Order of frequencies: based on a 264Hz baseline or "C"

  1. 660Hz
  2. 198Hz
  3. 44Hz
  4. 330Hz
  5. 211.2Hz
  6. 1584Hz
  7. 352Hz
  8. 105.6Hz
  9. 1.0E-7Hz
  10. 264Hz
  11. 10000000Hz
  12. 660Hz
  13. 198Hz
  14. 44Hz
  15. 330Hz
  16. 211.2Hz
  17. 1584Hz


Backward (Odd/Even) (x,y)|(x-1,y-1)

LR Row 1: 696969696969696969696F6+9=15
LR Row 2: 878787878787878787878D8+7=15
LR Row 3: 10510510510510510510510510510510C10+5=15
LR Row 4: 131313131313131313131F1+3=4
LR Row 5: 313131313131313131313G3+1=4
LR Row 6: 5105105105105105105105105105105C5+10=15
LR Row 7: 787878787878787878787Bb7+8=15
LR Row 8: 969696969696969696969G9+6=15
LR Row 9: 040404040404040404040zero0+4=4
LR Row 10: 222222222222222222222C2+2=4
LR Row 11: 404040404040404040404infinity4+0=4
LR Row 12: 696969696969696969696F6+9=15
LR Row 13: 878787878787878787878D8+7=15
LR Row 14: 10510510510510510510510510510510C10+5=15
LR Row 15: 131313131313131313131F1+3=4
LR Row 16: 313131313131313131313G3+1=4
LR Row 17: 5105105105105105105105105105105C5+10=15

Order of frequencies: based on a 264Hz baseline or "C"

  1. 176Hz
  2. 301.71428571429Hz
  3. 528Hz
  4. 88Hz
  5. 792Hz
  6. 132Hz
  7. 231Hz
  8. 396Hz
  9. 1.0E-7Hz
  10. 264Hz
  11. 10000000Hz
  12. 176Hz
  13. 301.71428571429Hz
  14. 528Hz
  15. 88Hz
  16. 792Hz
  17. 132Hz


Lambdoma Keyboard (Barbara Hero) colored in with the locally determined frequency , and the letter note values based on a 256Hz C.

012345678910111213141516
00/0
-
-
0/1
-
-
0/2
-
-
0/3
-
-
0/4
0Hz
zero:f3
0/5
-
-
0/6
-
-
0/7
0Hz
zero:b3
0/8
-
-
0/9
-
-
0/10
-
-
0/11
-
-
0/12
-
-
0/13
-
-
0/14
-
-
0/15
-
-
0/16
-
-
11/0
-
-
1/1
-
-
1/2
-
-
1/3
88Hz
F:f9
1/4
-
-
1/5
-
-
1/6
44Hz
F:b8
1/7
-
-
1/8
-
-
1/9
-
-
1/10
-
-
1/11
-
-
1/12
-
-
1/13
-
-
1/14
-
-
1/15
-
-
1/16
-
-
22/0
-
-
2/1
-
-
2/2
264Hz
C:f4
2/3
-
-
2/4
-
-
2/5
105Hz
G#:b2
2/6
-
-
2/7
-
-
2/8
-
-
2/9
-
-
2/10
-
-
2/11
-
-
2/12
-
-
2/13
-
-
2/14
-
-
2/15
-
-
2/16
-
-
33/0
-
-
3/1
792Hz
G:f10
3/2
-
-
3/3
-
-
3/4
198Hz
G:b7
3/5
-
-
3/6
-
-
3/7
-
-
3/8
-
-
3/9
-
-
3/10
-
-
3/11
-
-
3/12
-
-
3/13
-
-
3/14
-
-
3/15
-
-
3/16
-
-
44/0
10000000Hz
infinity:f5
4/1
-
-
4/2
-
-
4/3
352Hz
F:b1
4/4
-
-
4/5
-
-
4/6
-
-
4/7
-
-
4/8
-
-
4/9
-
-
4/10
-
-
4/11
-
-
4/12
-
-
4/13
-
-
4/14
-
-
4/15
-
-
4/16
-
-
55/0
-
-
5/1
-
-
5/2
660Hz
E:b6
5/3
-
-
5/4
-
-
5/5
-
-
5/6
-
-
5/7
-
-
5/8
-
-
5/9
-
-
5/10
132Hz
C:f0
5/11
-
-
5/12
-
-
5/13
-
-
5/14
-
-
5/15
-
-
5/16
-
-
66/0
-
-
6/1
1584Hz
G:b0
6/2
-
-
6/3
-
-
6/4
-
-
6/5
-
-
6/6
-
-
6/7
-
-
6/8
-
-
6/9
176Hz
F:f6
6/10
-
-
6/11
-
-
6/12
-
-
6/13
-
-
6/14
-
-
6/15
-
-
6/16
-
-
77/0
10000000Hz
infinity:b5
7/1
-
-
7/2
-
-
7/3
-
-
7/4
-
-
7/5
-
-
7/6
-
-
7/7
-
-
7/8
231Hz
Bb:f1
7/9
-
-
7/10
-
-
7/11
-
-
7/12
-
-
7/13
-
-
7/14
-
-
7/15
-
-
7/16
-
-
88/0
-
-
8/1
-
-
8/2
-
-
8/3
-
-
8/4
-
-
8/5
-
-
8/6
-
-
8/7
301Hz
D:f7
8/8
-
-
8/9
-
-
8/10
211Hz
G#:b10
8/11
-
-
8/12
-
-
8/13
-
-
8/14
-
-
8/15
-
-
8/16
-
-
99/0
-
-
9/1
-
-
9/2
-
-
9/3
-
-
9/4
-
-
9/5
-
-
9/6
396Hz
G:f2
9/7
-
-
9/8
-
-
9/9
264Hz
C:b4
9/10
-
-
9/11
-
-
9/12
-
-
9/13
-
-
9/14
-
-
9/15
-
-
9/16
-
-
1010/0
-
-
10/1
-
-
10/2
-
-
10/3
-
-
10/4
-
-
10/5
528Hz
C:f8
10/6
-
-
10/7
-
-
10/8
330Hz
E:b9
10/9
-
-
10/10
-
-
10/11
-
-
10/12
-
-
10/13
-
-
10/14
-
-
10/15
-
-
10/16
-
-
1111/0
-
-
11/1
-
-
11/2
-
-
11/3
-
-
11/4
-
-
11/5
-
-
11/6
-
-
11/7
-
-
11/8
-
-
11/9
-
-
11/10
-
-
11/11
-
-
11/12
-
-
11/13
-
-
11/14
-
-
11/15
-
-
11/16
-
-
1212/0
-
-
12/1
-
-
12/2
-
-
12/3
-
-
12/4
-
-
12/5
-
-
12/6
-
-
12/7
-
-
12/8
-
-
12/9
-
-
12/10
-
-
12/11
-
-
12/12
-
-
12/13
-
-
12/14
-
-
12/15
-
-
12/16
-
-
1313/0
-
-
13/1
-
-
13/2
-
-
13/3
-
-
13/4
-
-
13/5
-
-
13/6
-
-
13/7
-
-
13/8
-
-
13/9
-
-
13/10
-
-
13/11
-
-
13/12
-
-
13/13
-
-
13/14
-
-
13/15
-
-
13/16
-
-
1414/0
-
-
14/1
-
-
14/2
-
-
14/3
-
-
14/4
-
-
14/5
-
-
14/6
-
-
14/7
-
-
14/8
-
-
14/9
-
-
14/10
-
-
14/11
-
-
14/12
-
-
14/13
-
-
14/14
-
-
14/15
-
-
14/16
-
-
1515/0
-
-
15/1
-
-
15/2
-
-
15/3
-
-
15/4
-
-
15/5
-
-
15/6
-
-
15/7
-
-
15/8
-
-
15/9
-
-
15/10
-
-
15/11
-
-
15/12
-
-
15/13
-
-
15/14
-
-
15/15
-
-
15/16
-
-
1616/0
-
-
16/1
-
-
16/2
-
-
16/3
-
-
16/4
-
-
16/5
-
-
16/6
-
-
16/7
-
-
16/8
-
-
16/9
-
-
16/10
-
-
16/11
-
-
16/12
-
-
16/13
-
-
16/14
-
-
16/15
-
-
16/16
-
-

PRIMES: Differences and Harmonics

The bold letters at the end of each row represent the Lambdona Notes that the ratios of repeating increment_prime_original create.


Row

Forward (Primes) (x,y)|(x+1,y)

Row 1: 525252525252525252525E5+2=7
Row 2: 343434343434343434343G3+4=7
Row 3: 161616161616161616161F1+6=7
Row 4: 10810810810810810810810810810810E10+8=18
Row 5: 8108108108108108108108108108108G#8+10=18
Row 6: 616161616161616161616G6+1=7
Row 7: 434343434343434343434F4+3=7
Row 8: 252525252525252525252G#2+5=7
Row 9: 070707070707070707070zero0+7=7
Row 10: 999999999999999999999C9+9=18
Row 11: 707070707070707070707infinity7+0=7
Row 12: 525252525252525252525E5+2=7
Row 13: 343434343434343434343G3+4=7
Row 14: 161616161616161616161F1+6=7
Row 15: 10810810810810810810810810810810E10+8=18
Row 16: 8108108108108108108108108108108G#8+10=18
Row 17: 616161616161616161616G6+1=7

Order of frequencies: based on a 264Hz baseline or "C"

  1. 660Hz
  2. 198Hz
  3. 44Hz
  4. 330Hz
  5. 211.2Hz
  6. 1584Hz
  7. 352Hz
  8. 105.6Hz
  9. 1.0E-7Hz
  10. 264Hz
  11. 10000000Hz
  12. 660Hz
  13. 198Hz
  14. 44Hz
  15. 330Hz
  16. 211.2Hz
  17. 1584Hz


Backward (Primes) (x,y)|(x-1,y)

Row 1: 696969696969696969696F6+9=15
Row 2: 878787878787878787878D8+7=15
Row 3: 10510510510510510510510510510510C10+5=15
Row 4: 131313131313131313131F1+3=4
Row 5: 313131313131313131313G3+1=4
Row 6: 5105105105105105105105105105105C5+10=15
Row 7: 787878787878787878787Bb7+8=15
Row 8: 969696969696969696969G9+6=15
Row 9: 040404040404040404040zero0+4=4
Row 10: 222222222222222222222C2+2=4
Row 11: 404040404040404040404infinity4+0=4
Row 12: 696969696969696969696F6+9=15
Row 13: 878787878787878787878D8+7=15
Row 14: 10510510510510510510510510510510C10+5=15
Row 15: 131313131313131313131F1+3=4
Row 16: 313131313131313131313G3+1=4
Row 17: 5105105105105105105105105105105C5+10=15

Order of frequencies: based on a 264Hz baseline or "C"

  1. 176Hz
  2. 301.71428571429Hz
  3. 528Hz
  4. 88Hz
  5. 792Hz
  6. 132Hz
  7. 231Hz
  8. 396Hz
  9. 1.0E-7Hz
  10. 264Hz
  11. 10000000Hz
  12. 176Hz
  13. 301.71428571429Hz
  14. 528Hz
  15. 88Hz
  16. 792Hz
  17. 132Hz


Lambdoma Keyboard (Barbara Hero) colored in with the locally determined frequency , and the letter note values based on a 256Hz C.

012345678910111213141516
00/0
-
-
0/1
-
-
0/2
-
-
0/3
-
-
0/4
0Hz
zero:f3
0/5
-
-
0/6
-
-
0/7
0Hz
zero:b3
0/8
-
-
0/9
-
-
0/10
-
-
0/11
-
-
0/12
-
-
0/13
-
-
0/14
-
-
0/15
-
-
0/16
-
-
11/0
-
-
1/1
-
-
1/2
-
-
1/3
88Hz
F:f9
1/4
-
-
1/5
-
-
1/6
44Hz
F:b8
1/7
-
-
1/8
-
-
1/9
-
-
1/10
-
-
1/11
-
-
1/12
-
-
1/13
-
-
1/14
-
-
1/15
-
-
1/16
-
-
22/0
-
-
2/1
-
-
2/2
264Hz
C:f4
2/3
-
-
2/4
-
-
2/5
105Hz
G#:b2
2/6
-
-
2/7
-
-
2/8
-
-
2/9
-
-
2/10
-
-
2/11
-
-
2/12
-
-
2/13
-
-
2/14
-
-
2/15
-
-
2/16
-
-
33/0
-
-
3/1
792Hz
G:f10
3/2
-
-
3/3
-
-
3/4
198Hz
G:b7
3/5
-
-
3/6
-
-
3/7
-
-
3/8
-
-
3/9
-
-
3/10
-
-
3/11
-
-
3/12
-
-
3/13
-
-
3/14
-
-
3/15
-
-
3/16
-
-
44/0
10000000Hz
infinity:f5
4/1
-
-
4/2
-
-
4/3
352Hz
F:b1
4/4
-
-
4/5
-
-
4/6
-
-
4/7
-
-
4/8
-
-
4/9
-
-
4/10
-
-
4/11
-
-
4/12
-
-
4/13
-
-
4/14
-
-
4/15
-
-
4/16
-
-
55/0
-
-
5/1
-
-
5/2
660Hz
E:b6
5/3
-
-
5/4
-
-
5/5
-
-
5/6
-
-
5/7
-
-
5/8
-
-
5/9
-
-
5/10
132Hz
C:f0
5/11
-
-
5/12
-
-
5/13
-
-
5/14
-
-
5/15
-
-
5/16
-
-
66/0
-
-
6/1
1584Hz
G:b0
6/2
-
-
6/3
-
-
6/4
-
-
6/5
-
-
6/6
-
-
6/7
-
-
6/8
-
-
6/9
176Hz
F:f6
6/10
-
-
6/11
-
-
6/12
-
-
6/13
-
-
6/14
-
-
6/15
-
-
6/16
-
-
77/0
10000000Hz
infinity:b5
7/1
-
-
7/2
-
-
7/3
-
-
7/4
-
-
7/5
-
-
7/6
-
-
7/7
-
-
7/8
231Hz
Bb:f1
7/9
-
-
7/10
-
-
7/11
-
-
7/12
-
-
7/13
-
-
7/14
-
-
7/15
-
-
7/16
-
-
88/0
-
-
8/1
-
-
8/2
-
-
8/3
-
-
8/4
-
-
8/5
-
-
8/6
-
-
8/7
301Hz
D:f7
8/8
-
-
8/9
-
-
8/10
211Hz
G#:b10
8/11
-
-
8/12
-
-
8/13
-
-
8/14
-
-
8/15
-
-
8/16
-
-
99/0
-
-
9/1
-
-
9/2
-
-
9/3
-
-
9/4
-
-
9/5
-
-
9/6
396Hz
G:f2
9/7
-
-
9/8
-
-
9/9
264Hz
C:b4
9/10
-
-
9/11
-
-
9/12
-
-
9/13
-
-
9/14
-
-
9/15
-
-
9/16
-
-
1010/0
-
-
10/1
-
-
10/2
-
-
10/3
-
-
10/4
-
-
10/5
528Hz
C:f8
10/6
-
-
10/7
-
-
10/8
330Hz
E:b9
10/9
-
-
10/10
-
-
10/11
-
-
10/12
-
-
10/13
-
-
10/14
-
-
10/15
-
-
10/16
-
-
1111/0
-
-
11/1
-
-
11/2
-
-
11/3
-
-
11/4
-
-
11/5
-
-
11/6
-
-
11/7
-
-
11/8
-
-
11/9
-
-
11/10
-
-
11/11
-
-
11/12
-
-
11/13
-
-
11/14
-
-
11/15
-
-
11/16
-
-
1212/0
-
-
12/1
-
-
12/2
-
-
12/3
-
-
12/4
-
-
12/5
-
-
12/6
-
-
12/7
-
-
12/8
-
-
12/9
-
-
12/10
-
-
12/11
-
-
12/12
-
-
12/13
-
-
12/14
-
-
12/15
-
-
12/16
-
-
1313/0
-
-
13/1
-
-
13/2
-
-
13/3
-
-
13/4
-
-
13/5
-
-
13/6
-
-
13/7
-
-
13/8
-
-
13/9
-
-
13/10
-
-
13/11
-
-
13/12
-
-
13/13
-
-
13/14
-
-
13/15
-
-
13/16
-
-
1414/0
-
-
14/1
-
-
14/2
-
-
14/3
-
-
14/4
-
-
14/5
-
-
14/6
-
-
14/7
-
-
14/8
-
-
14/9
-
-
14/10
-
-
14/11
-
-
14/12
-
-
14/13
-
-
14/14
-
-
14/15
-
-
14/16
-
-
1515/0
-
-
15/1
-
-
15/2
-
-
15/3
-
-
15/4
-
-
15/5
-
-
15/6
-
-
15/7
-
-
15/8
-
-
15/9
-
-
15/10
-
-
15/11
-
-
15/12
-
-
15/13
-
-
15/14
-
-
15/15
-
-
15/16
-
-
1616/0
-
-
16/1
-
-
16/2
-
-
16/3
-
-
16/4
-
-
16/5
-
-
16/6
-
-
16/7
-
-
16/8
-
-
16/9
-
-
16/10
-
-
16/11
-
-
16/12
-
-
16/13
-
-
16/14
-
-
16/15
-
-
16/16
-
-

Right to Left Diagonals across a Row

Forward (Primes) (x,y)|(x+1,y-1)

RL Row 1: 525252525252525252525E5+2=7
RL Row 2: 343434343434343434343G3+4=7
RL Row 3: 161616161616161616161F1+6=7
RL Row 4: 10810810810810810810810810810810E10+8=18
RL Row 5: 8108108108108108108108108108108G#8+10=18
RL Row 6: 616161616161616161616G6+1=7
RL Row 7: 434343434343434343434F4+3=7
RL Row 8: 252525252525252525252G#2+5=7
RL Row 9: 070707070707070707070zero0+7=7
RL Row 10: 999999999999999999999C9+9=18
RL Row 11: 707070707070707070707infinity7+0=7
RL Row 12: 525252525252525252525E5+2=7
RL Row 13: 343434343434343434343G3+4=7
RL Row 14: 161616161616161616161F1+6=7
RL Row 15: 10810810810810810810810810810810E10+8=18
RL Row 16: 8108108108108108108108108108108G#8+10=18
RL Row 17: 616161616161616161616G6+1=7

Order of frequencies: based on a 264Hz baseline or "C"

  1. 660Hz
  2. 198Hz
  3. 44Hz
  4. 330Hz
  5. 211.2Hz
  6. 1584Hz
  7. 352Hz
  8. 105.6Hz
  9. 1.0E-7Hz
  10. 264Hz
  11. 10000000Hz
  12. 660Hz
  13. 198Hz
  14. 44Hz
  15. 330Hz
  16. 211.2Hz
  17. 1584Hz


Backward (Primes) (x,y)|(x-1,y+1)

RL Row 1: 696969696969696969696F6+9=15
RL Row 2: 878787878787878787878D8+7=15
RL Row 3: 10510510510510510510510510510510C10+5=15
RL Row 4: 131313131313131313131F1+3=4
RL Row 5: 313131313131313131313G3+1=4
RL Row 6: 5105105105105105105105105105105C5+10=15
RL Row 7: 787878787878787878787Bb7+8=15
RL Row 8: 969696969696969696969G9+6=15
RL Row 9: 040404040404040404040zero0+4=4
RL Row 10: 222222222222222222222C2+2=4
RL Row 11: 404040404040404040404infinity4+0=4
RL Row 12: 696969696969696969696F6+9=15
RL Row 13: 878787878787878787878D8+7=15
RL Row 14: 10510510510510510510510510510510C10+5=15
RL Row 15: 131313131313131313131F1+3=4
RL Row 16: 313131313131313131313G3+1=4
RL Row 17: 5105105105105105105105105105105C5+10=15

Order of frequencies: based on a 264Hz baseline or "C"

  1. 176Hz
  2. 301.71428571429Hz
  3. 528Hz
  4. 88Hz
  5. 792Hz
  6. 132Hz
  7. 231Hz
  8. 396Hz
  9. 1.0E-7Hz
  10. 264Hz
  11. 10000000Hz
  12. 176Hz
  13. 301.71428571429Hz
  14. 528Hz
  15. 88Hz
  16. 792Hz
  17. 132Hz


Lambdoma Keyboard (Barbara Hero) colored in with the locally determined frequency , and the letter note values based on a 256Hz C.

012345678910111213141516
00/0
-
-
0/1
-
-
0/2
-
-
0/3
-
-
0/4
0Hz
zero:f3
0/5
-
-
0/6
-
-
0/7
0Hz
zero:b3
0/8
-
-
0/9
-
-
0/10
-
-
0/11
-
-
0/12
-
-
0/13
-
-
0/14
-
-
0/15
-
-
0/16
-
-
11/0
-
-
1/1
-
-
1/2
-
-
1/3
88Hz
F:f9
1/4
-
-
1/5
-
-
1/6
44Hz
F:b8
1/7
-
-
1/8
-
-
1/9
-
-
1/10
-
-
1/11
-
-
1/12
-
-
1/13
-
-
1/14
-
-
1/15
-
-
1/16
-
-
22/0
-
-
2/1
-
-
2/2
264Hz
C:f4
2/3
-
-
2/4
-
-
2/5
105Hz
G#:b2
2/6
-
-
2/7
-
-
2/8
-
-
2/9
-
-
2/10
-
-
2/11
-
-
2/12
-
-
2/13
-
-
2/14
-
-
2/15
-
-
2/16
-
-
33/0
-
-
3/1
792Hz
G:f10
3/2
-
-
3/3
-
-
3/4
198Hz
G:b7
3/5
-
-
3/6
-
-
3/7
-
-
3/8
-
-
3/9
-
-
3/10
-
-
3/11
-
-
3/12
-
-
3/13
-
-
3/14
-
-
3/15
-
-
3/16
-
-
44/0
10000000Hz
infinity:f5
4/1
-
-
4/2
-
-
4/3
352Hz
F:b1
4/4
-
-
4/5
-
-
4/6
-
-
4/7
-
-
4/8
-
-
4/9
-
-
4/10
-
-
4/11
-
-
4/12
-
-
4/13
-
-
4/14
-
-
4/15
-
-
4/16
-
-
55/0
-
-
5/1
-
-
5/2
660Hz
E:b6
5/3
-
-
5/4
-
-
5/5
-
-
5/6
-
-
5/7
-
-
5/8
-
-
5/9
-
-
5/10
132Hz
C:f0
5/11
-
-
5/12
-
-
5/13
-
-
5/14
-
-
5/15
-
-
5/16
-
-
66/0
-
-
6/1
1584Hz
G:b0
6/2
-
-
6/3
-
-
6/4
-
-
6/5
-
-
6/6
-
-
6/7
-
-
6/8
-
-
6/9
176Hz
F:f6
6/10
-
-
6/11
-
-
6/12
-
-
6/13
-
-
6/14
-
-
6/15
-
-
6/16
-
-
77/0
10000000Hz
infinity:b5
7/1
-
-
7/2
-
-
7/3
-
-
7/4
-
-
7/5
-
-
7/6
-
-
7/7
-
-
7/8
231Hz
Bb:f1
7/9
-
-
7/10
-
-
7/11
-
-
7/12
-
-
7/13
-
-
7/14
-
-
7/15
-
-
7/16
-
-
88/0
-
-
8/1
-
-
8/2
-
-
8/3
-
-
8/4
-
-
8/5
-
-
8/6
-
-
8/7
301Hz
D:f7
8/8
-
-
8/9
-
-
8/10
211Hz
G#:b10
8/11
-
-
8/12
-
-
8/13
-
-
8/14
-
-
8/15
-
-
8/16
-
-
99/0
-
-
9/1
-
-
9/2
-
-
9/3
-
-
9/4
-
-
9/5
-
-
9/6
396Hz
G:f2
9/7
-
-
9/8
-
-
9/9
264Hz
C:b4
9/10
-
-
9/11
-
-
9/12
-
-
9/13
-
-
9/14
-
-
9/15
-
-
9/16
-
-
1010/0
-
-
10/1
-
-
10/2
-
-
10/3
-
-
10/4
-
-
10/5
528Hz
C:f8
10/6
-
-
10/7
-
-
10/8
330Hz
E:b9
10/9
-
-
10/10
-
-
10/11
-
-
10/12
-
-
10/13
-
-
10/14
-
-
10/15
-
-
10/16
-
-
1111/0
-
-
11/1
-
-
11/2
-
-
11/3
-
-
11/4
-
-
11/5
-
-
11/6
-
-
11/7
-
-
11/8
-
-
11/9
-
-
11/10
-
-
11/11
-
-
11/12
-
-
11/13
-
-
11/14
-
-
11/15
-
-
11/16
-
-
1212/0
-
-
12/1
-
-
12/2
-
-
12/3
-
-
12/4
-
-
12/5
-
-
12/6
-
-
12/7
-
-
12/8
-
-
12/9
-
-
12/10
-
-
12/11
-
-
12/12
-
-
12/13
-
-
12/14
-
-
12/15
-
-
12/16
-
-
1313/0
-
-
13/1
-
-
13/2
-
-
13/3
-
-
13/4
-
-
13/5
-
-
13/6
-
-
13/7
-
-
13/8
-
-
13/9
-
-
13/10
-
-
13/11
-
-
13/12
-
-
13/13
-
-
13/14
-
-
13/15
-
-
13/16
-
-
1414/0
-
-
14/1
-
-
14/2
-
-
14/3
-
-
14/4
-
-
14/5
-
-
14/6
-
-
14/7
-
-
14/8
-
-
14/9
-
-
14/10
-
-
14/11
-
-
14/12
-
-
14/13
-
-
14/14
-
-
14/15
-
-
14/16
-
-
1515/0
-
-
15/1
-
-
15/2
-
-
15/3
-
-
15/4
-
-
15/5
-
-
15/6
-
-
15/7
-
-
15/8
-
-
15/9
-
-
15/10
-
-
15/11
-
-
15/12
-
-
15/13
-
-
15/14
-
-
15/15
-
-
15/16
-
-
1616/0
-
-
16/1
-
-
16/2
-
-
16/3
-
-
16/4
-
-
16/5
-
-
16/6
-
-
16/7
-
-
16/8
-
-
16/9
-
-
16/10
-
-
16/11
-
-
16/12
-
-
16/13
-
-
16/14
-
-
16/15
-
-
16/16
-
-

Left to Right Diagonals across a Row

Forward (Odd/Even) (x,y)|(x+1,y+1)

LR Row 1: 616161616161616161616G6+1=7
LR Row 2: 434343434343434343434F4+3=7
LR Row 3: 252525252525252525252G#2+5=7
LR Row 4: 070707070707070707070zero0+7=7
LR Row 5: 999999999999999999999C9+9=18
LR Row 6: 707070707070707070707infinity7+0=7
LR Row 7: 525252525252525252525E5+2=7
LR Row 8: 343434343434343434343G3+4=7
LR Row 9: 161616161616161616161F1+6=7
LR Row 10: 10810810810810810810810810810810E10+8=18
LR Row 11: 8108108108108108108108108108108G#8+10=18
LR Row 12: 616161616161616161616G6+1=7
LR Row 13: 434343434343434343434F4+3=7
LR Row 14: 252525252525252525252G#2+5=7
LR Row 15: 070707070707070707070zero0+7=7
LR Row 16: 999999999999999999999C9+9=18
LR Row 17: 707070707070707070707infinity7+0=7
LR Row 18: 525252525252525252525E5+2=7

Order of frequencies: based on a 264Hz baseline or "C"

  1. 1584Hz
  2. 352Hz
  3. 105.6Hz
  4. 1.0E-7Hz
  5. 264Hz
  6. 10000000Hz
  7. 660Hz
  8. 198Hz
  9. 44Hz
  10. 330Hz
  11. 211.2Hz
  12. 1584Hz
  13. 352Hz
  14. 105.6Hz
  15. 1.0E-7Hz
  16. 264Hz
  17. 10000000Hz
  18. 660Hz


Backward (x,y)|(x-1,y-1)

LR Row 1: 5105105105105105105105105105105C5+10=15
LR Row 2: 787878787878787878787Bb7+8=15
LR Row 3: 969696969696969696969G9+6=15
LR Row 4: 040404040404040404040zero0+4=4
LR Row 5: 222222222222222222222C2+2=4
LR Row 6: 404040404040404040404infinity4+0=4
LR Row 7: 696969696969696969696F6+9=15
LR Row 8: 878787878787878787878D8+7=15
LR Row 9: 10510510510510510510510510510510C10+5=15
LR Row 10: 131313131313131313131F1+3=4
LR Row 11: 313131313131313131313G3+1=4
LR Row 12: 5105105105105105105105105105105C5+10=15
LR Row 13: 787878787878787878787Bb7+8=15
LR Row 14: 969696969696969696969G9+6=15
LR Row 15: 040404040404040404040zero0+4=4
LR Row 16: 222222222222222222222C2+2=4
LR Row 17: 404040404040404040404infinity4+0=4
LR Row 18: 696969696969696969696F6+9=15

Order of frequencies: based on a 264Hz baseline or "C"

  1. 132Hz
  2. 231Hz
  3. 396Hz
  4. 1.0E-7Hz
  5. 264Hz
  6. 10000000Hz
  7. 176Hz
  8. 301.71428571429Hz
  9. 528Hz
  10. 88Hz
  11. 792Hz
  12. 132Hz
  13. 231Hz
  14. 396Hz
  15. 1.0E-7Hz
  16. 264Hz
  17. 10000000Hz
  18. 176Hz


Lambdoma Keyboard (Barbara Hero) colored in with the locally determined frequency , and the letter note values based on a 256Hz C.

012345678910111213141516
00/0
-
-
0/1
-
-
0/2
-
-
0/3
-
-
0/4
0Hz
zero:f3
0/5
-
-
0/6
-
-
0/7
0Hz
zero:b3
0/8
-
-
0/9
-
-
0/10
-
-
0/11
-
-
0/12
-
-
0/13
-
-
0/14
-
-
0/15
-
-
0/16
-
-
11/0
-
-
1/1
-
-
1/2
-
-
1/3
88Hz
F:f9
1/4
-
-
1/5
-
-
1/6
44Hz
F:b8
1/7
-
-
1/8
-
-
1/9
-
-
1/10
-
-
1/11
-
-
1/12
-
-
1/13
-
-
1/14
-
-
1/15
-
-
1/16
-
-
22/0
-
-
2/1
-
-
2/2
264Hz
C:f4
2/3
-
-
2/4
-
-
2/5
105Hz
G#:b2
2/6
-
-
2/7
-
-
2/8
-
-
2/9
-
-
2/10
-
-
2/11
-
-
2/12
-
-
2/13
-
-
2/14
-
-
2/15
-
-
2/16
-
-
33/0
-
-
3/1
792Hz
G:f10
3/2
-
-
3/3
-
-
3/4
198Hz
G:b7
3/5
-
-
3/6
-
-
3/7
-
-
3/8
-
-
3/9
-
-
3/10
-
-
3/11
-
-
3/12
-
-
3/13
-
-
3/14
-
-
3/15
-
-
3/16
-
-
44/0
10000000Hz
infinity:f5
4/1
-
-
4/2
-
-
4/3
352Hz
F:b1
4/4
-
-
4/5
-
-
4/6
-
-
4/7
-
-
4/8
-
-
4/9
-
-
4/10
-
-
4/11
-
-
4/12
-
-
4/13
-
-
4/14
-
-
4/15
-
-
4/16
-
-
55/0
-
-
5/1
-
-
5/2
660Hz
E:b6
5/3
-
-
5/4
-
-
5/5
-
-
5/6
-
-
5/7
-
-
5/8
-
-
5/9
-
-
5/10
132Hz
C:f0
5/11
-
-
5/12
-
-
5/13
-
-
5/14
-
-
5/15
-
-
5/16
-
-
66/0
-
-
6/1
1584Hz
G:b0
6/2
-
-
6/3
-
-
6/4
-
-
6/5
-
-
6/6
-
-
6/7
-
-
6/8
-
-
6/9
176Hz
F:f6
6/10
-
-
6/11
-
-
6/12
-
-
6/13
-
-
6/14
-
-
6/15
-
-
6/16
-
-
77/0
10000000Hz
infinity:b5
7/1
-
-
7/2
-
-
7/3
-
-
7/4
-
-
7/5
-
-
7/6
-
-
7/7
-
-
7/8
231Hz
Bb:f1
7/9
-
-
7/10
-
-
7/11
-
-
7/12
-
-
7/13
-
-
7/14
-
-
7/15
-
-
7/16
-
-
88/0
-
-
8/1
-
-
8/2
-
-
8/3
-
-
8/4
-
-
8/5
-
-
8/6
-
-
8/7
301Hz
D:f7
8/8
-
-
8/9
-
-
8/10
211Hz
G#:b10
8/11
-
-
8/12
-
-
8/13
-
-
8/14
-
-
8/15
-
-
8/16
-
-
99/0
-
-
9/1
-
-
9/2
-
-
9/3
-
-
9/4
-
-
9/5
-
-
9/6
396Hz
G:f2
9/7
-
-
9/8
-
-
9/9
264Hz
C:b4
9/10
-
-
9/11
-
-
9/12
-
-
9/13
-
-
9/14
-
-
9/15
-
-
9/16
-
-
1010/0
-
-
10/1
-
-
10/2
-
-
10/3
-
-
10/4
-
-
10/5
528Hz
C:f8
10/6
-
-
10/7
-
-
10/8
330Hz
E:b9
10/9
-
-
10/10
-
-
10/11
-
-
10/12
-
-
10/13
-
-
10/14
-
-
10/15
-
-
10/16
-
-
1111/0
-
-
11/1
-
-
11/2
-
-
11/3
-
-
11/4
-
-
11/5
-
-
11/6
-
-
11/7
-
-
11/8
-
-
11/9
-
-
11/10
-
-
11/11
-
-
11/12
-
-
11/13
-
-
11/14
-
-
11/15
-
-
11/16
-
-
1212/0
-
-
12/1
-
-
12/2
-
-
12/3
-
-
12/4
-
-
12/5
-
-
12/6
-
-
12/7
-
-
12/8
-
-
12/9
-
-
12/10
-
-
12/11
-
-
12/12
-
-
12/13
-
-
12/14
-
-
12/15
-
-
12/16
-
-
1313/0
-
-
13/1
-
-
13/2
-
-
13/3
-
-
13/4
-
-
13/5
-
-
13/6
-
-
13/7
-
-
13/8
-
-
13/9
-
-
13/10
-
-
13/11
-
-
13/12
-
-
13/13
-
-
13/14
-
-
13/15
-
-
13/16
-
-
1414/0
-
-
14/1
-
-
14/2
-
-
14/3
-
-
14/4
-
-
14/5
-
-
14/6
-
-
14/7
-
-
14/8
-
-
14/9
-
-
14/10
-
-
14/11
-
-
14/12
-
-
14/13
-
-
14/14
-
-
14/15
-
-
14/16
-
-
1515/0
-
-
15/1
-
-
15/2
-
-
15/3
-
-
15/4
-
-
15/5
-
-
15/6
-
-
15/7
-
-
15/8
-
-
15/9
-
-
15/10
-
-
15/11
-
-
15/12
-
-
15/13
-
-
15/14
-
-
15/15
-
-
15/16
-
-
1616/0
-
-
16/1
-
-
16/2
-
-
16/3
-
-
16/4
-
-
16/5
-
-
16/6
-
-
16/7
-
-
16/8
-
-
16/9
-
-
16/10
-
-
16/11
-
-
16/12
-
-
16/13
-
-
16/14
-
-
16/15
-
-
16/16
-
-

Solving for the 3D: extrapolating the matrix into 3 dimensions creating a fabric that is infinitely scalable in 6 directions: a sample using waveform pairs form the 13/20 matrix: