JelloMatrix Result

If this looks like the beginning of a new math, that is because it is. It's actually a very old math reborn.

Welcome. Contact me directly at ana at jellobrain dot com if you'd like to talk about it.

This tool takes two numbers and creates a matrix grid with them, and then performs all sorts of calculations including harmonics and derivative value shifts between numbers in their numerical contexts (topologies).

In addition and perhaps more specifically, this tool evaluates matrices spliced with inverse (upside down) copies of themselves, and looks for waveforms in the resulting numerical topologies with the following characteristics:

  1. Bands of numbers in the spliced matrix with equal values adjacent to one another...
  2. which connect in predictable sine wave forms with one another...
  3. following the order of a scale which is determined by the top row of values in the unspliced and native "seed" matrix...
  4. rhythms that are even numbered change polarity at the crests of the waveforms, while odd rhythms change polarity at each shift in position.
  5. and harmonically cycle between zero and infinity.

Aspects of that set of characteristics will appear even if the full pattern is not present in unison.

In addition, the patterns seem to continue to contain these inherent characheristics even when the two polar grids are spliced in a way that they are offset.

Following the grid drawings will lead you through the story of how they are created, and enterring a value in the form to offset the grids will generate an offset grid.

This is where we see that even if the grids are offset vertically from one another, they still have an opportunity to be scale active and seem to function like Moire patterns in that sense.
This is where we modify the base frequency of the middle C value in the Lambdoma/Frequency charts.

You have scales!



The Original Matrix


18293104115126137
29310411512613718
31041151261371829
41151261371829310
51261371829310411
61371829310411512
71829310411512613
82931041151261371
93104115126137182
10411512613718293
11512613718293104
12613718293104115
13718293104115126
18293104115126137
29310411512613718
31041151261371829
41151261371829310
51261371829310411
61371829310411512
71829310411512613



Scale Pattern:

Whether you look at each row individually, or look at each diagonal row (in forward or backward 'slash' directions) you will notice that the order of numbers is consistent on every row (or each direction of diagonal rows) and that only the starting number differs from row to row. I refer to this as a 'scale'. If the scale were to be played in a circle consisting of the numbers of the first 'tone' value, the shape formed would be the same regardless of which number you start with.

  


HORIZONTAL SCALE [<->] (-6/6): 1, 8, 2, 9, 3, 10, 4, 11, 5, 12, 6, 13, 7,
FORWARD SLASH DIAGONAL SCALE [/] (6/7): 1, 7, 13, 6, 12, 5, 11, 4, 10, 3, 9, 2, 8,
BACKWARD SLASH DIAGONAL SCALE [\] (8/5): 1, 9, 4, 12, 7, 2, 10, 5, 13, 8, 3, 11, 6, ...





The Basic Orientation of the Spliced Matrix

Why splice the initial matrix? This started out as a hunch, but also following the work of Jose Arguilles who inspired this up to a point. But also the work of Mark Rothko and Randy Powell with their ABHA torus to which the matrix forms here bare some relation but which diverge from what Randy and Mark are doing in important ways. In my mind, splicing the matrix creates an architecture that reminded me of a battery. I do not think this analogy is off-base. When we combine this notion while also looking for the patterns in the 'scales' found in the original matrix, we see emergent patterns and pathways. The next progression of images takes you through a categorization of some of those patterns.

1781289239103410114511125612136713
2691337101481125912361013471115812
3510124611135712168132791381024911
4411115512126613137711882299331010
5312106413117511286213973110842119
6213973110842119531210641311751128
7118822993310104411115512126613137
8132791381024911351012461113571216
9123610134711158122691337101481125
1011451112561213671317812892391034
1110541211651312761138721983210943
1296313107411185212963131074111852
1387219832109431110541211651312761
1781289239103410114511125612136713
2691337101481125912361013471115812
3510124611135712168132791381024911
4411115512126613137711882299331010
5312106413117511286213973110842119
6213973110842119531210641311751128
7118822993310104411115512126613137

HIGHLIGHTING PRIMES: The Spliced Matrix

1781289239103410114511125612136713
2691337101481125912361013471115812
3510124611135712168132791381024911
4411115512126613137711882299331010
5312106413117511286213973110842119
6213973110842119531210641311751128
7118822993310104411115512126613137
8132791381024911351012461113571216
9123610134711158122691337101481125
1011451112561213671317812892391034
1110541211651312761138721983210943
1296313107411185212963131074111852
1387219832109431110541211651312761
1781289239103410114511125612136713
2691337101481125912361013471115812
3510124611135712168132791381024911
4411115512126613137711882299331010
5312106413117511286213973110842119
6213973110842119531210641311751128
7118822993310104411115512126613137

HIGHLIGHTING EVEN+ODD: The Spliced Matrix

1781289239103410114511125612136713
2691337101481125912361013471115812
3510124611135712168132791381024911
4411115512126613137711882299331010
5312106413117511286213973110842119
6213973110842119531210641311751128
7118822993310104411115512126613137
8132791381024911351012461113571216
9123610134711158122691337101481125
1011451112561213671317812892391034
1110541211651312761138721983210943
1296313107411185212963131074111852
1387219832109431110541211651312761
1781289239103410114511125612136713
2691337101481125912361013471115812
3510124611135712168132791381024911
4411115512126613137711882299331010
5312106413117511286213973110842119
6213973110842119531210641311751128
7118822993310104411115512126613137

Interstingly enough, the sections which seem to hold information about the vortec/ies they reflect seem to fall most often in the middle of the sine waves created by what appear to be very different "environments" or "gradients" between higher frequency oscillations of even and odd numbers (you might need to squint your eyes to see them), They are the waves defined by the more or less frequent oscillatory patterns taken as a whole. More about this in the "Rows" calculations in the "Increments" section below.


HORIZONTAL SCALED WAVES



Prime Series of Matrix is Forward Only

WAVE FORM POLE SHIFT: Highlighting the adjacent equal values.

1781289239103410114511125612136713
2691337101481125912361013471115812
3510124611135712168132791381024911
4411115512126613137711882299331010
5312106413117511286213973110842119
6213973110842119531210641311751128
7118822993310104411115512126613137
8132791381024911351012461113571216
9123610134711158122691337101481125
1011451112561213671317812892391034
1110541211651312761138721983210943
1296313107411185212963131074111852
1387219832109431110541211651312761
1781289239103410114511125612136713
2691337101481125912361013471115812
3510124611135712168132791381024911
4411115512126613137711882299331010
5312106413117511286213973110842119
6213973110842119531210641311751128
7118822993310104411115512126613137



HORIZONTAL SCALE [<->] (-6/6): 1, 8, 2, 9, 3, 10, 4, 11, 5, 12, 6, 13, 7,


WAVE FORM SCALES: The Waveform Scales: EVEN Rhythms

1781289239103410114511125612136713
2691337101481125912361013471115812
3510124611135712168132791381024911
4411115512126613137711882299331010
5312106413117511286213973110842119
6213973110842119531210641311751128
7118822993310104411115512126613137
8132791381024911351012461113571216
9123610134711158122691337101481125
1011451112561213671317812892391034
1110541211651312761138721983210943
1296313107411185212963131074111852
1387219832109431110541211651312761
1781289239103410114511125612136713
2691337101481125912361013471115812
3510124611135712168132791381024911
4411115512126613137711882299331010
5312106413117511286213973110842119
6213973110842119531210641311751128
7118822993310104411115512126613137


Scale Pattern:

This tool is meant as a proof of concept and not as a complete set of waveforms that are possible (although I am working on it!).


RED = Start of wave.

EVEN Waves

Starting 4: scale direction = reversed, rhythm = 2, initial vertical = down, color = powderblue.

Starting 4: scale direction = forward, rhythm = 6, initial vertical = down, color = orange.

Starting 4: scale direction = reversed, rhythm = 2, initial vertical = down, color = plum.

Starting 4: scale direction = forward, rhythm = 6, initial vertical = down, color = seagreen.




FORWARD BACKSLASH SCALED WAVES



Prime Series of Matrix is Forward Only



FORWARD SLASH DIAGONAL SCALE [/] (6/7): 1, 7, 13, 6, 12, 5, 11, 4, 10, 3, 9, 2, 8,


WAVE FORM SCALES: The Waveform Scales: EVEN Rhythms

1781289239103410114511125612136713
2691337101481125912361013471115812
3510124611135712168132791381024911
4411115512126613137711882299331010
5312106413117511286213973110842119
6213973110842119531210641311751128
7118822993310104411115512126613137
8132791381024911351012461113571216
9123610134711158122691337101481125
1011451112561213671317812892391034
1110541211651312761138721983210943
1296313107411185212963131074111852
1387219832109431110541211651312761
1781289239103410114511125612136713
2691337101481125912361013471115812
3510124611135712168132791381024911
4411115512126613137711882299331010
5312106413117511286213973110842119
6213973110842119531210641311751128
7118822993310104411115512126613137


Scale Pattern:

This tool is meant as a proof of concept and not as a complete set of waveforms that are possible (although I am working on it!).


RED = Start of wave.

EVEN Waves

Starting 4: scale direction = forward, rhythm = 2, initial vertical = down, color = powderblue.

Starting 4: scale direction = reversed, rhythm = 6, initial vertical = down, color = orange.

Starting 4: scale direction = forward, rhythm = 2, initial vertical = down, color = plum.

Starting 4: scale direction = reversed, rhythm = 6, initial vertical = down, color = seagreen.




BACKWARD BACKSLASH SCALED WAVES



Prime Series of Matrix is Forward Only



BACKWARD SLASH DIAGONAL SCALE [\] (8/5): 1, 9, 4, 12, 7, 2, 10, 5, 13, 8, 3, 11, 6,


WAVE FORM SCALES: The Waveform Scales: EVEN Rhythms

1781289239103410114511125612136713
2691337101481125912361013471115812
3510124611135712168132791381024911
4411115512126613137711882299331010
5312106413117511286213973110842119
6213973110842119531210641311751128
7118822993310104411115512126613137
8132791381024911351012461113571216
9123610134711158122691337101481125
1011451112561213671317812892391034
1110541211651312761138721983210943
1296313107411185212963131074111852
1387219832109431110541211651312761
1781289239103410114511125612136713
2691337101481125912361013471115812
3510124611135712168132791381024911
4411115512126613137711882299331010
5312106413117511286213973110842119
6213973110842119531210641311751128
7118822993310104411115512126613137


Scale Pattern:

This tool is meant as a proof of concept and not as a complete set of waveforms that are possible (although I am working on it!).


RED = Start of wave.

EVEN Waves

Starting 4: scale direction = forward, rhythm = 10, initial vertical = down, color = powderblue.

Starting 4: scale direction = forward, rhythm = 2, initial vertical = up, color = orange.

Starting 4: scale direction = forward, rhythm = 10, initial vertical = down, color = plum.

Starting 4: scale direction = forward, rhythm = 2, initial vertical = up, color = seagreen.



ODD/EVEN: Differences and Harmonics

These increment calculations show the relationships of the numbers in the grid by relating them to the ones in front of them (forward) and behind them (backwards) using the "tone" value as the base in the numbering system.


The diagonal increments still go down the row, but show the relationships between the number and the one diagonally above (forward) it and below it (backward).


The bold letters at the end of each row represent the Lambdona Notes that the ratios the repeating increments create.


Row

Forward (Odd/Even) (x,y)|(x+1,y)

As alluded to above, if you look at the number grid below, what I have noticed is that I can usually find 'vortex activity' starting and ending with rows that oscillate between '0' and another integer. So in this section, the vortex arrays are between "zero" and "infinity". In addition, between these rows, it seems to be important to have the intervals mirror one another as you move towards the center.

Row 1: 6161616161616161616161616G6+1=7
Row 2: 4343434343434343434343434F4+3=7
Row 3: 2525252525252525252525252G#2+5=7
Row 4: 0707070707070707070707070zero0+7=7
Row 5: 11911911911911911911911911911911911911Eb11+9=20
Row 6: 9119119119119119119119119119119119119A9+11=20
Row 7: 7070707070707070707070707infinity7+0=7
Row 8: 5252525252525252525252525E5+2=7
Row 9: 3434343434343434343434343G3+4=7
Row 10: 1616161616161616161616161F1+6=7
Row 11: 12812812812812812812812812812812812812G12+8=20
Row 12: 10101010101010101010101010101010101010101010101010C10+10=20
Row 13: 8128128128128128128128128128128128128F8+12=20
Row 14: 6161616161616161616161616G6+1=7
Row 15: 4343434343434343434343434F4+3=7
Row 16: 2525252525252525252525252G#2+5=7
Row 17: 0707070707070707070707070zero0+7=7
Row 18: 11911911911911911911911911911911911911Eb11+9=20
Row 19: 9119119119119119119119119119119119119A9+11=20
Row 20: 7070707070707070707070707infinity7+0=7

Order of frequencies: based on a 264Hz baseline or "C"

  1. 1584Hz
  2. 352Hz
  3. 105.6Hz
  4. 1.0E-7Hz
  5. 322.66666666667Hz
  6. 216Hz
  7. 10000000Hz
  8. 660Hz
  9. 198Hz
  10. 44Hz
  11. 396Hz
  12. 264Hz
  13. 176Hz
  14. 1584Hz
  15. 352Hz
  16. 105.6Hz
  17. 1.0E-7Hz
  18. 322.66666666667Hz
  19. 216Hz
  20. 10000000Hz


Backward (Odd/Even) (x,y)|(x-1,y)

Row 1: 7127127127127127127127127127127127127Eb7+12=19
Row 2: 9109109109109109109109109109109109109Bb9+10=19
Row 3: 11811811811811811811811811811811811811F#11+8=19
Row 4: 0606060606060606060606060zero0+6=6
Row 5: 2424242424242424242424242C2+4=6
Row 6: 4242424242424242424242424C4+2=6
Row 7: 6060606060606060606060606infinity6+0=6
Row 8: 8118118118118118118118118118118118118F#8+11=19
Row 9: 10910910910910910910910910910910910910D10+9=19
Row 10: 12712712712712712712712712712712712712A12+7=19
Row 11: 1515151515151515151515151G#1+5=6
Row 12: 3333333333333333333333333C3+3=6
Row 13: 5151515151515151515151515E5+1=6
Row 14: 7127127127127127127127127127127127127Eb7+12=19
Row 15: 9109109109109109109109109109109109109Bb9+10=19
Row 16: 11811811811811811811811811811811811811F#11+8=19
Row 17: 0606060606060606060606060zero0+6=6
Row 18: 2424242424242424242424242C2+4=6
Row 19: 4242424242424242424242424C4+2=6
Row 20: 6060606060606060606060606infinity6+0=6

Order of frequencies: based on a 264Hz baseline or "C"

  1. 154Hz
  2. 237.6Hz
  3. 363Hz
  4. 1.0E-7Hz
  5. 132Hz
  6. 528Hz
  7. 10000000Hz
  8. 192Hz
  9. 293.33333333333Hz
  10. 452.57142857143Hz
  11. 52.8Hz
  12. 264Hz
  13. 1320Hz
  14. 154Hz
  15. 237.6Hz
  16. 363Hz
  17. 1.0E-7Hz
  18. 132Hz
  19. 528Hz
  20. 10000000Hz


Lambdoma Keyboard (Barbara Hero) colored in with the locally determined frequency , and the letter note values based on a 256Hz C.

012345678910111213141516
00/0
-
-
0/1
-
-
0/2
-
-
0/3
-
-
0/4
-
-
0/5
-
-
0/6
0Hz
zero:f3
0/7
0Hz
zero:b3
0/8
-
-
0/9
-
-
0/10
-
-
0/11
-
-
0/12
-
-
0/13
-
-
0/14
-
-
0/15
-
-
0/16
-
-
11/0
-
-
1/1
-
-
1/2
-
-
1/3
-
-
1/4
-
-
1/5
52Hz
G#:f10
1/6
44Hz
F:b9
1/7
-
-
1/8
-
-
1/9
-
-
1/10
-
-
1/11
-
-
1/12
-
-
1/13
-
-
1/14
-
-
1/15
-
-
1/16
-
-
22/0
-
-
2/1
-
-
2/2
-
-
2/3
-
-
2/4
132Hz
C:f4
2/5
105Hz
G#:b2
2/6
-
-
2/7
-
-
2/8
-
-
2/9
-
-
2/10
-
-
2/11
-
-
2/12
-
-
2/13
-
-
2/14
-
-
2/15
-
-
2/16
-
-
33/0
-
-
3/1
-
-
3/2
-
-
3/3
264Hz
C:f11
3/4
198Hz
G:b8
3/5
-
-
3/6
-
-
3/7
-
-
3/8
-
-
3/9
-
-
3/10
-
-
3/11
-
-
3/12
-
-
3/13
-
-
3/14
-
-
3/15
-
-
3/16
-
-
44/0
-
-
4/1
-
-
4/2
528Hz
C:f5
4/3
352Hz
F:b1
4/4
-
-
4/5
-
-
4/6
-
-
4/7
-
-
4/8
-
-
4/9
-
-
4/10
-
-
4/11
-
-
4/12
-
-
4/13
-
-
4/14
-
-
4/15
-
-
4/16
-
-
55/0
-
-
5/1
1320Hz
E:f12
5/2
660Hz
E:b7
5/3
-
-
5/4
-
-
5/5
-
-
5/6
-
-
5/7
-
-
5/8
-
-
5/9
-
-
5/10
-
-
5/11
-
-
5/12
-
-
5/13
-
-
5/14
-
-
5/15
-
-
5/16
-
-
66/0
10000000Hz
infinity:f6
6/1
1584Hz
G:b0
6/2
-
-
6/3
-
-
6/4
-
-
6/5
-
-
6/6
-
-
6/7
-
-
6/8
-
-
6/9
-
-
6/10
-
-
6/11
-
-
6/12
-
-
6/13
-
-
6/14
-
-
6/15
-
-
6/16
-
-
77/0
10000000Hz
infinity:b6
7/1
-
-
7/2
-
-
7/3
-
-
7/4
-
-
7/5
-
-
7/6
-
-
7/7
-
-
7/8
-
-
7/9
-
-
7/10
-
-
7/11
-
-
7/12
154Hz
Eb:f0
7/13
-
-
7/14
-
-
7/15
-
-
7/16
-
-
88/0
-
-
8/1
-
-
8/2
-
-
8/3
-
-
8/4
-
-
8/5
-
-
8/6
-
-
8/7
-
-
8/8
-
-
8/9
-
-
8/10
-
-
8/11
192Hz
F#:f7
8/12
176Hz
F:b12
8/13
-
-
8/14
-
-
8/15
-
-
8/16
-
-
99/0
-
-
9/1
-
-
9/2
-
-
9/3
-
-
9/4
-
-
9/5
-
-
9/6
-
-
9/7
-
-
9/8
-
-
9/9
-
-
9/10
237Hz
Bb:f1
9/11
216Hz
A:b5
9/12
-
-
9/13
-
-
9/14
-
-
9/15
-
-
9/16
-
-
1010/0
-
-
10/1
-
-
10/2
-
-
10/3
-
-
10/4
-
-
10/5
-
-
10/6
-
-
10/7
-
-
10/8
-
-
10/9
293Hz
D:f8
10/10
264Hz
C:b11
10/11
-
-
10/12
-
-
10/13
-
-
10/14
-
-
10/15
-
-
10/16
-
-
1111/0
-
-
11/1
-
-
11/2
-
-
11/3
-
-
11/4
-
-
11/5
-
-
11/6
-
-
11/7
-
-
11/8
363Hz
F#:f2
11/9
322Hz
Eb:b4
11/10
-
-
11/11
-
-
11/12
-
-
11/13
-
-
11/14
-
-
11/15
-
-
11/16
-
-
1212/0
-
-
12/1
-
-
12/2
-
-
12/3
-
-
12/4
-
-
12/5
-
-
12/6
-
-
12/7
452Hz
A:f9
12/8
396Hz
G:b10
12/9
-
-
12/10
-
-
12/11
-
-
12/12
-
-
12/13
-
-
12/14
-
-
12/15
-
-
12/16
-
-
1313/0
-
-
13/1
-
-
13/2
-
-
13/3
-
-
13/4
-
-
13/5
-
-
13/6
-
-
13/7
-
-
13/8
-
-
13/9
-
-
13/10
-
-
13/11
-
-
13/12
-
-
13/13
-
-
13/14
-
-
13/15
-
-
13/16
-
-
1414/0
-
-
14/1
-
-
14/2
-
-
14/3
-
-
14/4
-
-
14/5
-
-
14/6
-
-
14/7
-
-
14/8
-
-
14/9
-
-
14/10
-
-
14/11
-
-
14/12
-
-
14/13
-
-
14/14
-
-
14/15
-
-
14/16
-
-
1515/0
-
-
15/1
-
-
15/2
-
-
15/3
-
-
15/4
-
-
15/5
-
-
15/6
-
-
15/7
-
-
15/8
-
-
15/9
-
-
15/10
-
-
15/11
-
-
15/12
-
-
15/13
-
-
15/14
-
-
15/15
-
-
15/16
-
-
1616/0
-
-
16/1
-
-
16/2
-
-
16/3
-
-
16/4
-
-
16/5
-
-
16/6
-
-
16/7
-
-
16/8
-
-
16/9
-
-
16/10
-
-
16/11
-
-
16/12
-
-
16/13
-
-
16/14
-
-
16/15
-
-
16/16
-
-

Right to Left Diagonals across a Row

Forward (Odd/Even) (x,y)|(x+1,y-1)

RL Row 1: 5252525252525252525252525E5+2=7
RL Row 2: 3434343434343434343434343G3+4=7
RL Row 3: 1616161616161616161616161F1+6=7
RL Row 4: 12812812812812812812812812812812812812G12+8=20
RL Row 5: 10101010101010101010101010101010101010101010101010C10+10=20
RL Row 6: 8128128128128128128128128128128128128F8+12=20
RL Row 7: 6161616161616161616161616G6+1=7
RL Row 8: 4343434343434343434343434F4+3=7
RL Row 9: 2525252525252525252525252G#2+5=7
RL Row 10: 0707070707070707070707070zero0+7=7
RL Row 11: 11911911911911911911911911911911911911Eb11+9=20
RL Row 12: 9119119119119119119119119119119119119A9+11=20
RL Row 13: 7070707070707070707070707infinity7+0=7
RL Row 14: 5252525252525252525252525E5+2=7
RL Row 15: 3434343434343434343434343G3+4=7
RL Row 16: 1616161616161616161616161F1+6=7
RL Row 17: 12812812812812812812812812812812812812G12+8=20
RL Row 18: 10101010101010101010101010101010101010101010101010C10+10=20
RL Row 19: 8128128128128128128128128128128128128F8+12=20

Order of frequencies: based on a 264Hz baseline or "C"

  1. 660Hz
  2. 198Hz
  3. 44Hz
  4. 396Hz
  5. 264Hz
  6. 176Hz
  7. 1584Hz
  8. 352Hz
  9. 105.6Hz
  10. 1.0E-7Hz
  11. 322.66666666667Hz
  12. 216Hz
  13. 10000000Hz
  14. 660Hz
  15. 198Hz
  16. 44Hz
  17. 396Hz
  18. 264Hz
  19. 176Hz


Backward (Odd/Even) (x,y)|(x-1,y+1)

RL Row 1: 8118118118118118118118118118118118118F#8+11=19
RL Row 2: 10910910910910910910910910910910910910D10+9=19
RL Row 3: 12712712712712712712712712712712712712A12+7=19
RL Row 4: 1515151515151515151515151G#1+5=6
RL Row 5: 3333333333333333333333333C3+3=6
RL Row 6: 5151515151515151515151515E5+1=6
RL Row 7: 7127127127127127127127127127127127127Eb7+12=19
RL Row 8: 9109109109109109109109109109109109109Bb9+10=19
RL Row 9: 11811811811811811811811811811811811811F#11+8=19
RL Row 10: 0606060606060606060606060zero0+6=6
RL Row 11: 2424242424242424242424242C2+4=6
RL Row 12: 4242424242424242424242424C4+2=6
RL Row 13: 6060606060606060606060606infinity6+0=6
RL Row 14: 8118118118118118118118118118118118118F#8+11=19
RL Row 15: 10910910910910910910910910910910910910D10+9=19
RL Row 16: 12712712712712712712712712712712712712A12+7=19
RL Row 17: 1515151515151515151515151G#1+5=6
RL Row 18: 3333333333333333333333333C3+3=6
RL Row 19: 5151515151515151515151515E5+1=6

Order of frequencies: based on a 264Hz baseline or "C"

  1. 192Hz
  2. 293.33333333333Hz
  3. 452.57142857143Hz
  4. 52.8Hz
  5. 264Hz
  6. 1320Hz
  7. 154Hz
  8. 237.6Hz
  9. 363Hz
  10. 1.0E-7Hz
  11. 132Hz
  12. 528Hz
  13. 10000000Hz
  14. 192Hz
  15. 293.33333333333Hz
  16. 452.57142857143Hz
  17. 52.8Hz
  18. 264Hz
  19. 1320Hz


Lambdoma Keyboard (Barbara Hero) colored in with the locally determined frequency , and the letter note values based on a 256Hz C.

012345678910111213141516
00/0
-
-
0/1
-
-
0/2
-
-
0/3
-
-
0/4
-
-
0/5
-
-
0/6
0Hz
zero:f3
0/7
0Hz
zero:b3
0/8
-
-
0/9
-
-
0/10
-
-
0/11
-
-
0/12
-
-
0/13
-
-
0/14
-
-
0/15
-
-
0/16
-
-
11/0
-
-
1/1
-
-
1/2
-
-
1/3
-
-
1/4
-
-
1/5
52Hz
G#:f10
1/6
44Hz
F:b9
1/7
-
-
1/8
-
-
1/9
-
-
1/10
-
-
1/11
-
-
1/12
-
-
1/13
-
-
1/14
-
-
1/15
-
-
1/16
-
-
22/0
-
-
2/1
-
-
2/2
-
-
2/3
-
-
2/4
132Hz
C:f4
2/5
105Hz
G#:b2
2/6
-
-
2/7
-
-
2/8
-
-
2/9
-
-
2/10
-
-
2/11
-
-
2/12
-
-
2/13
-
-
2/14
-
-
2/15
-
-
2/16
-
-
33/0
-
-
3/1
-
-
3/2
-
-
3/3
264Hz
C:f11
3/4
198Hz
G:b8
3/5
-
-
3/6
-
-
3/7
-
-
3/8
-
-
3/9
-
-
3/10
-
-
3/11
-
-
3/12
-
-
3/13
-
-
3/14
-
-
3/15
-
-
3/16
-
-
44/0
-
-
4/1
-
-
4/2
528Hz
C:f5
4/3
352Hz
F:b1
4/4
-
-
4/5
-
-
4/6
-
-
4/7
-
-
4/8
-
-
4/9
-
-
4/10
-
-
4/11
-
-
4/12
-
-
4/13
-
-
4/14
-
-
4/15
-
-
4/16
-
-
55/0
-
-
5/1
1320Hz
E:f12
5/2
660Hz
E:b7
5/3
-
-
5/4
-
-
5/5
-
-
5/6
-
-
5/7
-
-
5/8
-
-
5/9
-
-
5/10
-
-
5/11
-
-
5/12
-
-
5/13
-
-
5/14
-
-
5/15
-
-
5/16
-
-
66/0
10000000Hz
infinity:f6
6/1
1584Hz
G:b0
6/2
-
-
6/3
-
-
6/4
-
-
6/5
-
-
6/6
-
-
6/7
-
-
6/8
-
-
6/9
-
-
6/10
-
-
6/11
-
-
6/12
-
-
6/13
-
-
6/14
-
-
6/15
-
-
6/16
-
-
77/0
10000000Hz
infinity:b6
7/1
-
-
7/2
-
-
7/3
-
-
7/4
-
-
7/5
-
-
7/6
-
-
7/7
-
-
7/8
-
-
7/9
-
-
7/10
-
-
7/11
-
-
7/12
154Hz
Eb:f0
7/13
-
-
7/14
-
-
7/15
-
-
7/16
-
-
88/0
-
-
8/1
-
-
8/2
-
-
8/3
-
-
8/4
-
-
8/5
-
-
8/6
-
-
8/7
-
-
8/8
-
-
8/9
-
-
8/10
-
-
8/11
192Hz
F#:f7
8/12
176Hz
F:b12
8/13
-
-
8/14
-
-
8/15
-
-
8/16
-
-
99/0
-
-
9/1
-
-
9/2
-
-
9/3
-
-
9/4
-
-
9/5
-
-
9/6
-
-
9/7
-
-
9/8
-
-
9/9
-
-
9/10
237Hz
Bb:f1
9/11
216Hz
A:b5
9/12
-
-
9/13
-
-
9/14
-
-
9/15
-
-
9/16
-
-
1010/0
-
-
10/1
-
-
10/2
-
-
10/3
-
-
10/4
-
-
10/5
-
-
10/6
-
-
10/7
-
-
10/8
-
-
10/9
293Hz
D:f8
10/10
264Hz
C:b11
10/11
-
-
10/12
-
-
10/13
-
-
10/14
-
-
10/15
-
-
10/16
-
-
1111/0
-
-
11/1
-
-
11/2
-
-
11/3
-
-
11/4
-
-
11/5
-
-
11/6
-
-
11/7
-
-
11/8
363Hz
F#:f2
11/9
322Hz
Eb:b4
11/10
-
-
11/11
-
-
11/12
-
-
11/13
-
-
11/14
-
-
11/15
-
-
11/16
-
-
1212/0
-
-
12/1
-
-
12/2
-
-
12/3
-
-
12/4
-
-
12/5
-
-
12/6
-
-
12/7
452Hz
A:f9
12/8
396Hz
G:b10
12/9
-
-
12/10
-
-
12/11
-
-
12/12
-
-
12/13
-
-
12/14
-
-
12/15
-
-
12/16
-
-
1313/0
-
-
13/1
-
-
13/2
-
-
13/3
-
-
13/4
-
-
13/5
-
-
13/6
-
-
13/7
-
-
13/8
-
-
13/9
-
-
13/10
-
-
13/11
-
-
13/12
-
-
13/13
-
-
13/14
-
-
13/15
-
-
13/16
-
-
1414/0
-
-
14/1
-
-
14/2
-
-
14/3
-
-
14/4
-
-
14/5
-
-
14/6
-
-
14/7
-
-
14/8
-
-
14/9
-
-
14/10
-
-
14/11
-
-
14/12
-
-
14/13
-
-
14/14
-
-
14/15
-
-
14/16
-
-
1515/0
-
-
15/1
-
-
15/2
-
-
15/3
-
-
15/4
-
-
15/5
-
-
15/6
-
-
15/7
-
-
15/8
-
-
15/9
-
-
15/10
-
-
15/11
-
-
15/12
-
-
15/13
-
-
15/14
-
-
15/15
-
-
15/16
-
-
1616/0
-
-
16/1
-
-
16/2
-
-
16/3
-
-
16/4
-
-
16/5
-
-
16/6
-
-
16/7
-
-
16/8
-
-
16/9
-
-
16/10
-
-
16/11
-
-
16/12
-
-
16/13
-
-
16/14
-
-
16/15
-
-
16/16
-
-

Left to Right Diagonals across a Row

Forward (Odd/Even) (x,y)|(x+1,y+1)

LR Row 1: 5252525252525252525252525E5+2=7
LR Row 2: 3434343434343434343434343G3+4=7
LR Row 3: 1616161616161616161616161F1+6=7
LR Row 4: 12812812812812812812812812812812812812G12+8=20
LR Row 5: 10101010101010101010101010101010101010101010101010C10+10=20
LR Row 6: 8128128128128128128128128128128128128F8+12=20
LR Row 7: 6161616161616161616161616G6+1=7
LR Row 8: 4343434343434343434343434F4+3=7
LR Row 9: 2525252525252525252525252G#2+5=7
LR Row 10: 0707070707070707070707070zero0+7=7
LR Row 11: 11911911911911911911911911911911911911Eb11+9=20
LR Row 12: 9119119119119119119119119119119119119A9+11=20
LR Row 13: 7070707070707070707070707infinity7+0=7
LR Row 14: 5252525252525252525252525E5+2=7
LR Row 15: 3434343434343434343434343G3+4=7
LR Row 16: 1616161616161616161616161F1+6=7
LR Row 17: 12812812812812812812812812812812812812G12+8=20
LR Row 18: 10101010101010101010101010101010101010101010101010C10+10=20
LR Row 19: 8128128128128128128128128128128128128F8+12=20

Order of frequencies: based on a 264Hz baseline or "C"

  1. 660Hz
  2. 198Hz
  3. 44Hz
  4. 396Hz
  5. 264Hz
  6. 176Hz
  7. 1584Hz
  8. 352Hz
  9. 105.6Hz
  10. 1.0E-7Hz
  11. 322.66666666667Hz
  12. 216Hz
  13. 10000000Hz
  14. 660Hz
  15. 198Hz
  16. 44Hz
  17. 396Hz
  18. 264Hz
  19. 176Hz


Backward (Odd/Even) (x,y)|(x-1,y-1)

LR Row 1: 8118118118118118118118118118118118118F#8+11=19
LR Row 2: 10910910910910910910910910910910910910D10+9=19
LR Row 3: 12712712712712712712712712712712712712A12+7=19
LR Row 4: 1515151515151515151515151G#1+5=6
LR Row 5: 3333333333333333333333333C3+3=6
LR Row 6: 5151515151515151515151515E5+1=6
LR Row 7: 7127127127127127127127127127127127127Eb7+12=19
LR Row 8: 9109109109109109109109109109109109109Bb9+10=19
LR Row 9: 11811811811811811811811811811811811811F#11+8=19
LR Row 10: 0606060606060606060606060zero0+6=6
LR Row 11: 2424242424242424242424242C2+4=6
LR Row 12: 4242424242424242424242424C4+2=6
LR Row 13: 6060606060606060606060606infinity6+0=6
LR Row 14: 8118118118118118118118118118118118118F#8+11=19
LR Row 15: 10910910910910910910910910910910910910D10+9=19
LR Row 16: 12712712712712712712712712712712712712A12+7=19
LR Row 17: 1515151515151515151515151G#1+5=6
LR Row 18: 3333333333333333333333333C3+3=6
LR Row 19: 5151515151515151515151515E5+1=6

Order of frequencies: based on a 264Hz baseline or "C"

  1. 192Hz
  2. 293.33333333333Hz
  3. 452.57142857143Hz
  4. 52.8Hz
  5. 264Hz
  6. 1320Hz
  7. 154Hz
  8. 237.6Hz
  9. 363Hz
  10. 1.0E-7Hz
  11. 132Hz
  12. 528Hz
  13. 10000000Hz
  14. 192Hz
  15. 293.33333333333Hz
  16. 452.57142857143Hz
  17. 52.8Hz
  18. 264Hz
  19. 1320Hz


Lambdoma Keyboard (Barbara Hero) colored in with the locally determined frequency , and the letter note values based on a 256Hz C.

012345678910111213141516
00/0
-
-
0/1
-
-
0/2
-
-
0/3
-
-
0/4
-
-
0/5
-
-
0/6
0Hz
zero:f3
0/7
0Hz
zero:b3
0/8
-
-
0/9
-
-
0/10
-
-
0/11
-
-
0/12
-
-
0/13
-
-
0/14
-
-
0/15
-
-
0/16
-
-
11/0
-
-
1/1
-
-
1/2
-
-
1/3
-
-
1/4
-
-
1/5
52Hz
G#:f10
1/6
44Hz
F:b9
1/7
-
-
1/8
-
-
1/9
-
-
1/10
-
-
1/11
-
-
1/12
-
-
1/13
-
-
1/14
-
-
1/15
-
-
1/16
-
-
22/0
-
-
2/1
-
-
2/2
-
-
2/3
-
-
2/4
132Hz
C:f4
2/5
105Hz
G#:b2
2/6
-
-
2/7
-
-
2/8
-
-
2/9
-
-
2/10
-
-
2/11
-
-
2/12
-
-
2/13
-
-
2/14
-
-
2/15
-
-
2/16
-
-
33/0
-
-
3/1
-
-
3/2
-
-
3/3
264Hz
C:f11
3/4
198Hz
G:b8
3/5
-
-
3/6
-
-
3/7
-
-
3/8
-
-
3/9
-
-
3/10
-
-
3/11
-
-
3/12
-
-
3/13
-
-
3/14
-
-
3/15
-
-
3/16
-
-
44/0
-
-
4/1
-
-
4/2
528Hz
C:f5
4/3
352Hz
F:b1
4/4
-
-
4/5
-
-
4/6
-
-
4/7
-
-
4/8
-
-
4/9
-
-
4/10
-
-
4/11
-
-
4/12
-
-
4/13
-
-
4/14
-
-
4/15
-
-
4/16
-
-
55/0
-
-
5/1
1320Hz
E:f12
5/2
660Hz
E:b7
5/3
-
-
5/4
-
-
5/5
-
-
5/6
-
-
5/7
-
-
5/8
-
-
5/9
-
-
5/10
-
-
5/11
-
-
5/12
-
-
5/13
-
-
5/14
-
-
5/15
-
-
5/16
-
-
66/0
10000000Hz
infinity:f6
6/1
1584Hz
G:b0
6/2
-
-
6/3
-
-
6/4
-
-
6/5
-
-
6/6
-
-
6/7
-
-
6/8
-
-
6/9
-
-
6/10
-
-
6/11
-
-
6/12
-
-
6/13
-
-
6/14
-
-
6/15
-
-
6/16
-
-
77/0
10000000Hz
infinity:b6
7/1
-
-
7/2
-
-
7/3
-
-
7/4
-
-
7/5
-
-
7/6
-
-
7/7
-
-
7/8
-
-
7/9
-
-
7/10
-
-
7/11
-
-
7/12
154Hz
Eb:f0
7/13
-
-
7/14
-
-
7/15
-
-
7/16
-
-
88/0
-
-
8/1
-
-
8/2
-
-
8/3
-
-
8/4
-
-
8/5
-
-
8/6
-
-
8/7
-
-
8/8
-
-
8/9
-
-
8/10
-
-
8/11
192Hz
F#:f7
8/12
176Hz
F:b12
8/13
-
-
8/14
-
-
8/15
-
-
8/16
-
-
99/0
-
-
9/1
-
-
9/2
-
-
9/3
-
-
9/4
-
-
9/5
-
-
9/6
-
-
9/7
-
-
9/8
-
-
9/9
-
-
9/10
237Hz
Bb:f1
9/11
216Hz
A:b5
9/12
-
-
9/13
-
-
9/14
-
-
9/15
-
-
9/16
-
-
1010/0
-
-
10/1
-
-
10/2
-
-
10/3
-
-
10/4
-
-
10/5
-
-
10/6
-
-
10/7
-
-
10/8
-
-
10/9
293Hz
D:f8
10/10
264Hz
C:b11
10/11
-
-
10/12
-
-
10/13
-
-
10/14
-
-
10/15
-
-
10/16
-
-
1111/0
-
-
11/1
-
-
11/2
-
-
11/3
-
-
11/4
-
-
11/5
-
-
11/6
-
-
11/7
-
-
11/8
363Hz
F#:f2
11/9
322Hz
Eb:b4
11/10
-
-
11/11
-
-
11/12
-
-
11/13
-
-
11/14
-
-
11/15
-
-
11/16
-
-
1212/0
-
-
12/1
-
-
12/2
-
-
12/3
-
-
12/4
-
-
12/5
-
-
12/6
-
-
12/7
452Hz
A:f9
12/8
396Hz
G:b10
12/9
-
-
12/10
-
-
12/11
-
-
12/12
-
-
12/13
-
-
12/14
-
-
12/15
-
-
12/16
-
-
1313/0
-
-
13/1
-
-
13/2
-
-
13/3
-
-
13/4
-
-
13/5
-
-
13/6
-
-
13/7
-
-
13/8
-
-
13/9
-
-
13/10
-
-
13/11
-
-
13/12
-
-
13/13
-
-
13/14
-
-
13/15
-
-
13/16
-
-
1414/0
-
-
14/1
-
-
14/2
-
-
14/3
-
-
14/4
-
-
14/5
-
-
14/6
-
-
14/7
-
-
14/8
-
-
14/9
-
-
14/10
-
-
14/11
-
-
14/12
-
-
14/13
-
-
14/14
-
-
14/15
-
-
14/16
-
-
1515/0
-
-
15/1
-
-
15/2
-
-
15/3
-
-
15/4
-
-
15/5
-
-
15/6
-
-
15/7
-
-
15/8
-
-
15/9
-
-
15/10
-
-
15/11
-
-
15/12
-
-
15/13
-
-
15/14
-
-
15/15
-
-
15/16
-
-
1616/0
-
-
16/1
-
-
16/2
-
-
16/3
-
-
16/4
-
-
16/5
-
-
16/6
-
-
16/7
-
-
16/8
-
-
16/9
-
-
16/10
-
-
16/11
-
-
16/12
-
-
16/13
-
-
16/14
-
-
16/15
-
-
16/16
-
-

PRIMES: Differences and Harmonics

The bold letters at the end of each row represent the Lambdona Notes that the ratios of repeating increment_prime_original create.


Row

Forward (Primes) (x,y)|(x+1,y)

Row 1: 5252525252525252525252525E5+2=7
Row 2: 3434343434343434343434343G3+4=7
Row 3: 1616161616161616161616161F1+6=7
Row 4: 12812812812812812812812812812812812812G12+8=20
Row 5: 10101010101010101010101010101010101010101010101010C10+10=20
Row 6: 8128128128128128128128128128128128128F8+12=20
Row 7: 6161616161616161616161616G6+1=7
Row 8: 4343434343434343434343434F4+3=7
Row 9: 2525252525252525252525252G#2+5=7
Row 10: 0707070707070707070707070zero0+7=7
Row 11: 11911911911911911911911911911911911911Eb11+9=20
Row 12: 9119119119119119119119119119119119119A9+11=20
Row 13: 7070707070707070707070707infinity7+0=7
Row 14: 5252525252525252525252525E5+2=7
Row 15: 3434343434343434343434343G3+4=7
Row 16: 1616161616161616161616161F1+6=7
Row 17: 12812812812812812812812812812812812812G12+8=20
Row 18: 10101010101010101010101010101010101010101010101010C10+10=20
Row 19: 8128128128128128128128128128128128128F8+12=20

Order of frequencies: based on a 264Hz baseline or "C"

  1. 660Hz
  2. 198Hz
  3. 44Hz
  4. 396Hz
  5. 264Hz
  6. 176Hz
  7. 1584Hz
  8. 352Hz
  9. 105.6Hz
  10. 1.0E-7Hz
  11. 322.66666666667Hz
  12. 216Hz
  13. 10000000Hz
  14. 660Hz
  15. 198Hz
  16. 44Hz
  17. 396Hz
  18. 264Hz
  19. 176Hz


Backward (Primes) (x,y)|(x-1,y)

Row 1: 8118118118118118118118118118118118118F#8+11=19
Row 2: 10910910910910910910910910910910910910D10+9=19
Row 3: 12712712712712712712712712712712712712A12+7=19
Row 4: 1515151515151515151515151G#1+5=6
Row 5: 3333333333333333333333333C3+3=6
Row 6: 5151515151515151515151515E5+1=6
Row 7: 7127127127127127127127127127127127127Eb7+12=19
Row 8: 9109109109109109109109109109109109109Bb9+10=19
Row 9: 11811811811811811811811811811811811811F#11+8=19
Row 10: 0606060606060606060606060zero0+6=6
Row 11: 2424242424242424242424242C2+4=6
Row 12: 4242424242424242424242424C4+2=6
Row 13: 6060606060606060606060606infinity6+0=6
Row 14: 8118118118118118118118118118118118118F#8+11=19
Row 15: 10910910910910910910910910910910910910D10+9=19
Row 16: 12712712712712712712712712712712712712A12+7=19
Row 17: 1515151515151515151515151G#1+5=6
Row 18: 3333333333333333333333333C3+3=6
Row 19: 5151515151515151515151515E5+1=6

Order of frequencies: based on a 264Hz baseline or "C"

  1. 192Hz
  2. 293.33333333333Hz
  3. 452.57142857143Hz
  4. 52.8Hz
  5. 264Hz
  6. 1320Hz
  7. 154Hz
  8. 237.6Hz
  9. 363Hz
  10. 1.0E-7Hz
  11. 132Hz
  12. 528Hz
  13. 10000000Hz
  14. 192Hz
  15. 293.33333333333Hz
  16. 452.57142857143Hz
  17. 52.8Hz
  18. 264Hz
  19. 1320Hz


Lambdoma Keyboard (Barbara Hero) colored in with the locally determined frequency , and the letter note values based on a 256Hz C.

012345678910111213141516
00/0
-
-
0/1
-
-
0/2
-
-
0/3
-
-
0/4
-
-
0/5
-
-
0/6
0Hz
zero:f3
0/7
0Hz
zero:b3
0/8
-
-
0/9
-
-
0/10
-
-
0/11
-
-
0/12
-
-
0/13
-
-
0/14
-
-
0/15
-
-
0/16
-
-
11/0
-
-
1/1
-
-
1/2
-
-
1/3
-
-
1/4
-
-
1/5
52Hz
G#:f10
1/6
44Hz
F:b9
1/7
-
-
1/8
-
-
1/9
-
-
1/10
-
-
1/11
-
-
1/12
-
-
1/13
-
-
1/14
-
-
1/15
-
-
1/16
-
-
22/0
-
-
2/1
-
-
2/2
-
-
2/3
-
-
2/4
132Hz
C:f4
2/5
105Hz
G#:b2
2/6
-
-
2/7
-
-
2/8
-
-
2/9
-
-
2/10
-
-
2/11
-
-
2/12
-
-
2/13
-
-
2/14
-
-
2/15
-
-
2/16
-
-
33/0
-
-
3/1
-
-
3/2
-
-
3/3
264Hz
C:f11
3/4
198Hz
G:b8
3/5
-
-
3/6
-
-
3/7
-
-
3/8
-
-
3/9
-
-
3/10
-
-
3/11
-
-
3/12
-
-
3/13
-
-
3/14
-
-
3/15
-
-
3/16
-
-
44/0
-
-
4/1
-
-
4/2
528Hz
C:f5
4/3
352Hz
F:b1
4/4
-
-
4/5
-
-
4/6
-
-
4/7
-
-
4/8
-
-
4/9
-
-
4/10
-
-
4/11
-
-
4/12
-
-
4/13
-
-
4/14
-
-
4/15
-
-
4/16
-
-
55/0
-
-
5/1
1320Hz
E:f12
5/2
660Hz
E:b7
5/3
-
-
5/4
-
-
5/5
-
-
5/6
-
-
5/7
-
-
5/8
-
-
5/9
-
-
5/10
-
-
5/11
-
-
5/12
-
-
5/13
-
-
5/14
-
-
5/15
-
-
5/16
-
-
66/0
10000000Hz
infinity:f6
6/1
1584Hz
G:b0
6/2
-
-
6/3
-
-
6/4
-
-
6/5
-
-
6/6
-
-
6/7
-
-
6/8
-
-
6/9
-
-
6/10
-
-
6/11
-
-
6/12
-
-
6/13
-
-
6/14
-
-
6/15
-
-
6/16
-
-
77/0
10000000Hz
infinity:b6
7/1
-
-
7/2
-
-
7/3
-
-
7/4
-
-
7/5
-
-
7/6
-
-
7/7
-
-
7/8
-
-
7/9
-
-
7/10
-
-
7/11
-
-
7/12
154Hz
Eb:f0
7/13
-
-
7/14
-
-
7/15
-
-
7/16
-
-
88/0
-
-
8/1
-
-
8/2
-
-
8/3
-
-
8/4
-
-
8/5
-
-
8/6
-
-
8/7
-
-
8/8
-
-
8/9
-
-
8/10
-
-
8/11
192Hz
F#:f7
8/12
176Hz
F:b12
8/13
-
-
8/14
-
-
8/15
-
-
8/16
-
-
99/0
-
-
9/1
-
-
9/2
-
-
9/3
-
-
9/4
-
-
9/5
-
-
9/6
-
-
9/7
-
-
9/8
-
-
9/9
-
-
9/10
237Hz
Bb:f1
9/11
216Hz
A:b5
9/12
-
-
9/13
-
-
9/14
-
-
9/15
-
-
9/16
-
-
1010/0
-
-
10/1
-
-
10/2
-
-
10/3
-
-
10/4
-
-
10/5
-
-
10/6
-
-
10/7
-
-
10/8
-
-
10/9
293Hz
D:f8
10/10
264Hz
C:b11
10/11
-
-
10/12
-
-
10/13
-
-
10/14
-
-
10/15
-
-
10/16
-
-
1111/0
-
-
11/1
-
-
11/2
-
-
11/3
-
-
11/4
-
-
11/5
-
-
11/6
-
-
11/7
-
-
11/8
363Hz
F#:f2
11/9
322Hz
Eb:b4
11/10
-
-
11/11
-
-
11/12
-
-
11/13
-
-
11/14
-
-
11/15
-
-
11/16
-
-
1212/0
-
-
12/1
-
-
12/2
-
-
12/3
-
-
12/4
-
-
12/5
-
-
12/6
-
-
12/7
452Hz
A:f9
12/8
396Hz
G:b10
12/9
-
-
12/10
-
-
12/11
-
-
12/12
-
-
12/13
-
-
12/14
-
-
12/15
-
-
12/16
-
-
1313/0
-
-
13/1
-
-
13/2
-
-
13/3
-
-
13/4
-
-
13/5
-
-
13/6
-
-
13/7
-
-
13/8
-
-
13/9
-
-
13/10
-
-
13/11
-
-
13/12
-
-
13/13
-
-
13/14
-
-
13/15
-
-
13/16
-
-
1414/0
-
-
14/1
-
-
14/2
-
-
14/3
-
-
14/4
-
-
14/5
-
-
14/6
-
-
14/7
-
-
14/8
-
-
14/9
-
-
14/10
-
-
14/11
-
-
14/12
-
-
14/13
-
-
14/14
-
-
14/15
-
-
14/16
-
-
1515/0
-
-
15/1
-
-
15/2
-
-
15/3
-
-
15/4
-
-
15/5
-
-
15/6
-
-
15/7
-
-
15/8
-
-
15/9
-
-
15/10
-
-
15/11
-
-
15/12
-
-
15/13
-
-
15/14
-
-
15/15
-
-
15/16
-
-
1616/0
-
-
16/1
-
-
16/2
-
-
16/3
-
-
16/4
-
-
16/5
-
-
16/6
-
-
16/7
-
-
16/8
-
-
16/9
-
-
16/10
-
-
16/11
-
-
16/12
-
-
16/13
-
-
16/14
-
-
16/15
-
-
16/16
-
-

Right to Left Diagonals across a Row

Forward (Primes) (x,y)|(x+1,y-1)

RL Row 1: 5252525252525252525252525E5+2=7
RL Row 2: 3434343434343434343434343G3+4=7
RL Row 3: 1616161616161616161616161F1+6=7
RL Row 4: 12812812812812812812812812812812812812G12+8=20
RL Row 5: 10101010101010101010101010101010101010101010101010C10+10=20
RL Row 6: 8128128128128128128128128128128128128F8+12=20
RL Row 7: 6161616161616161616161616G6+1=7
RL Row 8: 4343434343434343434343434F4+3=7
RL Row 9: 2525252525252525252525252G#2+5=7
RL Row 10: 0707070707070707070707070zero0+7=7
RL Row 11: 11911911911911911911911911911911911911Eb11+9=20
RL Row 12: 9119119119119119119119119119119119119A9+11=20
RL Row 13: 7070707070707070707070707infinity7+0=7
RL Row 14: 5252525252525252525252525E5+2=7
RL Row 15: 3434343434343434343434343G3+4=7
RL Row 16: 1616161616161616161616161F1+6=7
RL Row 17: 12812812812812812812812812812812812812G12+8=20
RL Row 18: 10101010101010101010101010101010101010101010101010C10+10=20
RL Row 19: 8128128128128128128128128128128128128F8+12=20

Order of frequencies: based on a 264Hz baseline or "C"

  1. 660Hz
  2. 198Hz
  3. 44Hz
  4. 396Hz
  5. 264Hz
  6. 176Hz
  7. 1584Hz
  8. 352Hz
  9. 105.6Hz
  10. 1.0E-7Hz
  11. 322.66666666667Hz
  12. 216Hz
  13. 10000000Hz
  14. 660Hz
  15. 198Hz
  16. 44Hz
  17. 396Hz
  18. 264Hz
  19. 176Hz


Backward (Primes) (x,y)|(x-1,y+1)

RL Row 1: 8118118118118118118118118118118118118F#8+11=19
RL Row 2: 10910910910910910910910910910910910910D10+9=19
RL Row 3: 12712712712712712712712712712712712712A12+7=19
RL Row 4: 1515151515151515151515151G#1+5=6
RL Row 5: 3333333333333333333333333C3+3=6
RL Row 6: 5151515151515151515151515E5+1=6
RL Row 7: 7127127127127127127127127127127127127Eb7+12=19
RL Row 8: 9109109109109109109109109109109109109Bb9+10=19
RL Row 9: 11811811811811811811811811811811811811F#11+8=19
RL Row 10: 0606060606060606060606060zero0+6=6
RL Row 11: 2424242424242424242424242C2+4=6
RL Row 12: 4242424242424242424242424C4+2=6
RL Row 13: 6060606060606060606060606infinity6+0=6
RL Row 14: 8118118118118118118118118118118118118F#8+11=19
RL Row 15: 10910910910910910910910910910910910910D10+9=19
RL Row 16: 12712712712712712712712712712712712712A12+7=19
RL Row 17: 1515151515151515151515151G#1+5=6
RL Row 18: 3333333333333333333333333C3+3=6
RL Row 19: 5151515151515151515151515E5+1=6

Order of frequencies: based on a 264Hz baseline or "C"

  1. 192Hz
  2. 293.33333333333Hz
  3. 452.57142857143Hz
  4. 52.8Hz
  5. 264Hz
  6. 1320Hz
  7. 154Hz
  8. 237.6Hz
  9. 363Hz
  10. 1.0E-7Hz
  11. 132Hz
  12. 528Hz
  13. 10000000Hz
  14. 192Hz
  15. 293.33333333333Hz
  16. 452.57142857143Hz
  17. 52.8Hz
  18. 264Hz
  19. 1320Hz


Lambdoma Keyboard (Barbara Hero) colored in with the locally determined frequency , and the letter note values based on a 256Hz C.

012345678910111213141516
00/0
-
-
0/1
-
-
0/2
-
-
0/3
-
-
0/4
-
-
0/5
-
-
0/6
0Hz
zero:f3
0/7
0Hz
zero:b3
0/8
-
-
0/9
-
-
0/10
-
-
0/11
-
-
0/12
-
-
0/13
-
-
0/14
-
-
0/15
-
-
0/16
-
-
11/0
-
-
1/1
-
-
1/2
-
-
1/3
-
-
1/4
-
-
1/5
52Hz
G#:f10
1/6
44Hz
F:b9
1/7
-
-
1/8
-
-
1/9
-
-
1/10
-
-
1/11
-
-
1/12
-
-
1/13
-
-
1/14
-
-
1/15
-
-
1/16
-
-
22/0
-
-
2/1
-
-
2/2
-
-
2/3
-
-
2/4
132Hz
C:f4
2/5
105Hz
G#:b2
2/6
-
-
2/7
-
-
2/8
-
-
2/9
-
-
2/10
-
-
2/11
-
-
2/12
-
-
2/13
-
-
2/14
-
-
2/15
-
-
2/16
-
-
33/0
-
-
3/1
-
-
3/2
-
-
3/3
264Hz
C:f11
3/4
198Hz
G:b8
3/5
-
-
3/6
-
-
3/7
-
-
3/8
-
-
3/9
-
-
3/10
-
-
3/11
-
-
3/12
-
-
3/13
-
-
3/14
-
-
3/15
-
-
3/16
-
-
44/0
-
-
4/1
-
-
4/2
528Hz
C:f5
4/3
352Hz
F:b1
4/4
-
-
4/5
-
-
4/6
-
-
4/7
-
-
4/8
-
-
4/9
-
-
4/10
-
-
4/11
-
-
4/12
-
-
4/13
-
-
4/14
-
-
4/15
-
-
4/16
-
-
55/0
-
-
5/1
1320Hz
E:f12
5/2
660Hz
E:b7
5/3
-
-
5/4
-
-
5/5
-
-
5/6
-
-
5/7
-
-
5/8
-
-
5/9
-
-
5/10
-
-
5/11
-
-
5/12
-
-
5/13
-
-
5/14
-
-
5/15
-
-
5/16
-
-
66/0
10000000Hz
infinity:f6
6/1
1584Hz
G:b0
6/2
-
-
6/3
-
-
6/4
-
-
6/5
-
-
6/6
-
-
6/7
-
-
6/8
-
-
6/9
-
-
6/10
-
-
6/11
-
-
6/12
-
-
6/13
-
-
6/14
-
-
6/15
-
-
6/16
-
-
77/0
10000000Hz
infinity:b6
7/1
-
-
7/2
-
-
7/3
-
-
7/4
-
-
7/5
-
-
7/6
-
-
7/7
-
-
7/8
-
-
7/9
-
-
7/10
-
-
7/11
-
-
7/12
154Hz
Eb:f0
7/13
-
-
7/14
-
-
7/15
-
-
7/16
-
-
88/0
-
-
8/1
-
-
8/2
-
-
8/3
-
-
8/4
-
-
8/5
-
-
8/6
-
-
8/7
-
-
8/8
-
-
8/9
-
-
8/10
-
-
8/11
192Hz
F#:f7
8/12
176Hz
F:b12
8/13
-
-
8/14
-
-
8/15
-
-
8/16
-
-
99/0
-
-
9/1
-
-
9/2
-
-
9/3
-
-
9/4
-
-
9/5
-
-
9/6
-
-
9/7
-
-
9/8
-
-
9/9
-
-
9/10
237Hz
Bb:f1
9/11
216Hz
A:b5
9/12
-
-
9/13
-
-
9/14
-
-
9/15
-
-
9/16
-
-
1010/0
-
-
10/1
-
-
10/2
-
-
10/3
-
-
10/4
-
-
10/5
-
-
10/6
-
-
10/7
-
-
10/8
-
-
10/9
293Hz
D:f8
10/10
264Hz
C:b11
10/11
-
-
10/12
-
-
10/13
-
-
10/14
-
-
10/15
-
-
10/16
-
-
1111/0
-
-
11/1
-
-
11/2
-
-
11/3
-
-
11/4
-
-
11/5
-
-
11/6
-
-
11/7
-
-
11/8
363Hz
F#:f2
11/9
322Hz
Eb:b4
11/10
-
-
11/11
-
-
11/12
-
-
11/13
-
-
11/14
-
-
11/15
-
-
11/16
-
-
1212/0
-
-
12/1
-
-
12/2
-
-
12/3
-
-
12/4
-
-
12/5
-
-
12/6
-
-
12/7
452Hz
A:f9
12/8
396Hz
G:b10
12/9
-
-
12/10
-
-
12/11
-
-
12/12
-
-
12/13
-
-
12/14
-
-
12/15
-
-
12/16
-
-
1313/0
-
-
13/1
-
-
13/2
-
-
13/3
-
-
13/4
-
-
13/5
-
-
13/6
-
-
13/7
-
-
13/8
-
-
13/9
-
-
13/10
-
-
13/11
-
-
13/12
-
-
13/13
-
-
13/14
-
-
13/15
-
-
13/16
-
-
1414/0
-
-
14/1
-
-
14/2
-
-
14/3
-
-
14/4
-
-
14/5
-
-
14/6
-
-
14/7
-
-
14/8
-
-
14/9
-
-
14/10
-
-
14/11
-
-
14/12
-
-
14/13
-
-
14/14
-
-
14/15
-
-
14/16
-
-
1515/0
-
-
15/1
-
-
15/2
-
-
15/3
-
-
15/4
-
-
15/5
-
-
15/6
-
-
15/7
-
-
15/8
-
-
15/9
-
-
15/10
-
-
15/11
-
-
15/12
-
-
15/13
-
-
15/14
-
-
15/15
-
-
15/16
-
-
1616/0
-
-
16/1
-
-
16/2
-
-
16/3
-
-
16/4
-
-
16/5
-
-
16/6
-
-
16/7
-
-
16/8
-
-
16/9
-
-
16/10
-
-
16/11
-
-
16/12
-
-
16/13
-
-
16/14
-
-
16/15
-
-
16/16
-
-

Left to Right Diagonals across a Row

Forward (Odd/Even) (x,y)|(x+1,y+1)

LR Row 1: 6161616161616161616161616G6+1=7
LR Row 2: 4343434343434343434343434F4+3=7
LR Row 3: 2525252525252525252525252G#2+5=7
LR Row 4: 0707070707070707070707070zero0+7=7
LR Row 5: 11911911911911911911911911911911911911Eb11+9=20
LR Row 6: 9119119119119119119119119119119119119A9+11=20
LR Row 7: 7070707070707070707070707infinity7+0=7
LR Row 8: 5252525252525252525252525E5+2=7
LR Row 9: 3434343434343434343434343G3+4=7
LR Row 10: 1616161616161616161616161F1+6=7
LR Row 11: 12812812812812812812812812812812812812G12+8=20
LR Row 12: 10101010101010101010101010101010101010101010101010C10+10=20
LR Row 13: 8128128128128128128128128128128128128F8+12=20
LR Row 14: 6161616161616161616161616G6+1=7
LR Row 15: 4343434343434343434343434F4+3=7
LR Row 16: 2525252525252525252525252G#2+5=7
LR Row 17: 0707070707070707070707070zero0+7=7
LR Row 18: 11911911911911911911911911911911911911Eb11+9=20
LR Row 19: 9119119119119119119119119119119119119A9+11=20
LR Row 20: 7070707070707070707070707infinity7+0=7

Order of frequencies: based on a 264Hz baseline or "C"

  1. 1584Hz
  2. 352Hz
  3. 105.6Hz
  4. 1.0E-7Hz
  5. 322.66666666667Hz
  6. 216Hz
  7. 10000000Hz
  8. 660Hz
  9. 198Hz
  10. 44Hz
  11. 396Hz
  12. 264Hz
  13. 176Hz
  14. 1584Hz
  15. 352Hz
  16. 105.6Hz
  17. 1.0E-7Hz
  18. 322.66666666667Hz
  19. 216Hz
  20. 10000000Hz


Backward (x,y)|(x-1,y-1)

LR Row 1: 7127127127127127127127127127127127127Eb7+12=19
LR Row 2: 9109109109109109109109109109109109109Bb9+10=19
LR Row 3: 11811811811811811811811811811811811811F#11+8=19
LR Row 4: 0606060606060606060606060zero0+6=6
LR Row 5: 2424242424242424242424242C2+4=6
LR Row 6: 4242424242424242424242424C4+2=6
LR Row 7: 6060606060606060606060606infinity6+0=6
LR Row 8: 8118118118118118118118118118118118118F#8+11=19
LR Row 9: 10910910910910910910910910910910910910D10+9=19
LR Row 10: 12712712712712712712712712712712712712A12+7=19
LR Row 11: 1515151515151515151515151G#1+5=6
LR Row 12: 3333333333333333333333333C3+3=6
LR Row 13: 5151515151515151515151515E5+1=6
LR Row 14: 7127127127127127127127127127127127127Eb7+12=19
LR Row 15: 9109109109109109109109109109109109109Bb9+10=19
LR Row 16: 11811811811811811811811811811811811811F#11+8=19
LR Row 17: 0606060606060606060606060zero0+6=6
LR Row 18: 2424242424242424242424242C2+4=6
LR Row 19: 4242424242424242424242424C4+2=6
LR Row 20: 6060606060606060606060606infinity6+0=6

Order of frequencies: based on a 264Hz baseline or "C"

  1. 154Hz
  2. 237.6Hz
  3. 363Hz
  4. 1.0E-7Hz
  5. 132Hz
  6. 528Hz
  7. 10000000Hz
  8. 192Hz
  9. 293.33333333333Hz
  10. 452.57142857143Hz
  11. 52.8Hz
  12. 264Hz
  13. 1320Hz
  14. 154Hz
  15. 237.6Hz
  16. 363Hz
  17. 1.0E-7Hz
  18. 132Hz
  19. 528Hz
  20. 10000000Hz


Lambdoma Keyboard (Barbara Hero) colored in with the locally determined frequency , and the letter note values based on a 256Hz C.

012345678910111213141516
00/0
-
-
0/1
-
-
0/2
-
-
0/3
-
-
0/4
-
-
0/5
-
-
0/6
0Hz
zero:f3
0/7
0Hz
zero:b3
0/8
-
-
0/9
-
-
0/10
-
-
0/11
-
-
0/12
-
-
0/13
-
-
0/14
-
-
0/15
-
-
0/16
-
-
11/0
-
-
1/1
-
-
1/2
-
-
1/3
-
-
1/4
-
-
1/5
52Hz
G#:f10
1/6
44Hz
F:b9
1/7
-
-
1/8
-
-
1/9
-
-
1/10
-
-
1/11
-
-
1/12
-
-
1/13
-
-
1/14
-
-
1/15
-
-
1/16
-
-
22/0
-
-
2/1
-
-
2/2
-
-
2/3
-
-
2/4
132Hz
C:f4
2/5
105Hz
G#:b2
2/6
-
-
2/7
-
-
2/8
-
-
2/9
-
-
2/10
-
-
2/11
-
-
2/12
-
-
2/13
-
-
2/14
-
-
2/15
-
-
2/16
-
-
33/0
-
-
3/1
-
-
3/2
-
-
3/3
264Hz
C:f11
3/4
198Hz
G:b8
3/5
-
-
3/6
-
-
3/7
-
-
3/8
-
-
3/9
-
-
3/10
-
-
3/11
-
-
3/12
-
-
3/13
-
-
3/14
-
-
3/15
-
-
3/16
-
-
44/0
-
-
4/1
-
-
4/2
528Hz
C:f5
4/3
352Hz
F:b1
4/4
-
-
4/5
-
-
4/6
-
-
4/7
-
-
4/8
-
-
4/9
-
-
4/10
-
-
4/11
-
-
4/12
-
-
4/13
-
-
4/14
-
-
4/15
-
-
4/16
-
-
55/0
-
-
5/1
1320Hz
E:f12
5/2
660Hz
E:b7
5/3
-
-
5/4
-
-
5/5
-
-
5/6
-
-
5/7
-
-
5/8
-
-
5/9
-
-
5/10
-
-
5/11
-
-
5/12
-
-
5/13
-
-
5/14
-
-
5/15
-
-
5/16
-
-
66/0
10000000Hz
infinity:f6
6/1
1584Hz
G:b0
6/2
-
-
6/3
-
-
6/4
-
-
6/5
-
-
6/6
-
-
6/7
-
-
6/8
-
-
6/9
-
-
6/10
-
-
6/11
-
-
6/12
-
-
6/13
-
-
6/14
-
-
6/15
-
-
6/16
-
-
77/0
10000000Hz
infinity:b6
7/1
-
-
7/2
-
-
7/3
-
-
7/4
-
-
7/5
-
-
7/6
-
-
7/7
-
-
7/8
-
-
7/9
-
-
7/10
-
-
7/11
-
-
7/12
154Hz
Eb:f0
7/13
-
-
7/14
-
-
7/15
-
-
7/16
-
-
88/0
-
-
8/1
-
-
8/2
-
-
8/3
-
-
8/4
-
-
8/5
-
-
8/6
-
-
8/7
-
-
8/8
-
-
8/9
-
-
8/10
-
-
8/11
192Hz
F#:f7
8/12
176Hz
F:b12
8/13
-
-
8/14
-
-
8/15
-
-
8/16
-
-
99/0
-
-
9/1
-
-
9/2
-
-
9/3
-
-
9/4
-
-
9/5
-
-
9/6
-
-
9/7
-
-
9/8
-
-
9/9
-
-
9/10
237Hz
Bb:f1
9/11
216Hz
A:b5
9/12
-
-
9/13
-
-
9/14
-
-
9/15
-
-
9/16
-
-
1010/0
-
-
10/1
-
-
10/2
-
-
10/3
-
-
10/4
-
-
10/5
-
-
10/6
-
-
10/7
-
-
10/8
-
-
10/9
293Hz
D:f8
10/10
264Hz
C:b11
10/11
-
-
10/12
-
-
10/13
-
-
10/14
-
-
10/15
-
-
10/16
-
-
1111/0
-
-
11/1
-
-
11/2
-
-
11/3
-
-
11/4
-
-
11/5
-
-
11/6
-
-
11/7
-
-
11/8
363Hz
F#:f2
11/9
322Hz
Eb:b4
11/10
-
-
11/11
-
-
11/12
-
-
11/13
-
-
11/14
-
-
11/15
-
-
11/16
-
-
1212/0
-
-
12/1
-
-
12/2
-
-
12/3
-
-
12/4
-
-
12/5
-
-
12/6
-
-
12/7
452Hz
A:f9
12/8
396Hz
G:b10
12/9
-
-
12/10
-
-
12/11
-
-
12/12
-
-
12/13
-
-
12/14
-
-
12/15
-
-
12/16
-
-
1313/0
-
-
13/1
-
-
13/2
-
-
13/3
-
-
13/4
-
-
13/5
-
-
13/6
-
-
13/7
-
-
13/8
-
-
13/9
-
-
13/10
-
-
13/11
-
-
13/12
-
-
13/13
-
-
13/14
-
-
13/15
-
-
13/16
-
-
1414/0
-
-
14/1
-
-
14/2
-
-
14/3
-
-
14/4
-
-
14/5
-
-
14/6
-
-
14/7
-
-
14/8
-
-
14/9
-
-
14/10
-
-
14/11
-
-
14/12
-
-
14/13
-
-
14/14
-
-
14/15
-
-
14/16
-
-
1515/0
-
-
15/1
-
-
15/2
-
-
15/3
-
-
15/4
-
-
15/5
-
-
15/6
-
-
15/7
-
-
15/8
-
-
15/9
-
-
15/10
-
-
15/11
-
-
15/12
-
-
15/13
-
-
15/14
-
-
15/15
-
-
15/16
-
-
1616/0
-
-
16/1
-
-
16/2
-
-
16/3
-
-
16/4
-
-
16/5
-
-
16/6
-
-
16/7
-
-
16/8
-
-
16/9
-
-
16/10
-
-
16/11
-
-
16/12
-
-
16/13
-
-
16/14
-
-
16/15
-
-
16/16
-
-

Solving for the 3D: extrapolating the matrix into 3 dimensions creating a fabric that is infinitely scalable in 6 directions: a sample using waveform pairs form the 13/20 matrix: