JelloMatrix Result

If this looks like the beginning of a new math, that is because it is. It's actually a very old math reborn.

Welcome. Contact me directly at ana at jellobrain dot com if you'd like to talk about it.

This tool takes two numbers and creates a matrix grid with them, and then performs all sorts of calculations including harmonics and derivative value shifts between numbers in their numerical contexts (topologies).

In addition and perhaps more specifically, this tool evaluates matrices spliced with inverse (upside down) copies of themselves, and looks for waveforms in the resulting numerical topologies with the following characteristics:

  1. Bands of numbers in the spliced matrix with equal values adjacent to one another...
  2. which connect in predictable sine wave forms with one another...
  3. following the order of a scale which is determined by the top row of values in the unspliced and native "seed" matrix...
  4. rhythms that are even numbered change polarity at the crests of the waveforms, while odd rhythms change polarity at each shift in position.
  5. and harmonically cycle between zero and infinity.

Aspects of that set of characteristics will appear even if the full pattern is not present in unison.

In addition, the patterns seem to continue to contain these inherent characheristics even when the two polar grids are spliced in a way that they are offset.

Following the grid drawings will lead you through the story of how they are created, and enterring a value in the form to offset the grids will generate an offset grid.

This is where we see that even if the grids are offset vertically from one another, they still have an opportunity to be scale active and seem to function like Moire patterns in that sense.

You have scales!



The Original Matrix


18293104115126137
29310411512613718
31041151261371829
41151261371829310
51261371829310411
61371829310411512
71829310411512613
82931041151261371
93104115126137182
10411512613718293
11512613718293104
12613718293104115
13718293104115126
18293104115126137
29310411512613718
31041151261371829
41151261371829310
51261371829310411
61371829310411512
71829310411512613



Scale Pattern:

Whether you look at each row individually, or look at each diagonal row (in forward or backward 'slash' directions) you will notice that the order of numbers is consistent on every row (or each direction of diagonal rows) and that only the starting number differs from row to row. I refer to this as a 'scale'. If the scale were to be played in a circle consisting of the numbers of the first 'tone' value, the shape formed would be the same regardless of which number you start with.

  


HORIZONTAL SCALE [<->] (7/6): 1, 8, 2, 9, 3, 10, 4, 11, 5, 12, 6, 13, 7,
FORWARD SLASH DIAGONAL SCALE [/] (6/7): 1, 7, 13, 6, 12, 5, 11, 4, 10, 3, 9, 2, 8,
BACKWARD SLASH DIAGONAL SCALE [\] (8/5): 1, 9, 4, 12, 7, 2, 10, 5, 13, 8, 3, 11, 6, ...




The Basic Orientation of the Spliced Matrix

Why splice the initial matrix? This started out as a hunch, but also following the work of Jose Arguilles who inspired this up to a point. But also the work of Mark Rothko and Randy Powell with their ABHA torus to which the matrix forms here bare some relation but which diverge from what Randy and Mark are doing in important ways. In my mind, splicing the matrix creates an architecture that reminded me of a battery. I do not think this analogy is off-base. When we combine this notion while also looking for the patterns in the 'scales' found in the original matrix, we see emergent patterns and pathways. The next progression of images takes you through a categorization of some of those patterns.

1781289239103410114511125612136713
2691337101481125912361013471115812
3510124611135712168132791381024911
4411115512126613137711882299331010
5312106413117511286213973110842119
6213973110842119531210641311751128
7118822993310104411115512126613137
8132791381024911351012461113571216
9123610134711158122691337101481125
1011451112561213671317812892391034
1110541211651312761138721983210943
1296313107411185212963131074111852
1387219832109431110541211651312761
1781289239103410114511125612136713
2691337101481125912361013471115812
3510124611135712168132791381024911
4411115512126613137711882299331010
5312106413117511286213973110842119
6213973110842119531210641311751128
7118822993310104411115512126613137

HIGHLIGHTING PRIMES: The Spliced Matrix

1781289239103410114511125612136713
2691337101481125912361013471115812
3510124611135712168132791381024911
4411115512126613137711882299331010
5312106413117511286213973110842119
6213973110842119531210641311751128
7118822993310104411115512126613137
8132791381024911351012461113571216
9123610134711158122691337101481125
1011451112561213671317812892391034
1110541211651312761138721983210943
1296313107411185212963131074111852
1387219832109431110541211651312761
1781289239103410114511125612136713
2691337101481125912361013471115812
3510124611135712168132791381024911
4411115512126613137711882299331010
5312106413117511286213973110842119
6213973110842119531210641311751128
7118822993310104411115512126613137

HIGHLIGHTING EVEN+ODD: The Spliced Matrix

1781289239103410114511125612136713
2691337101481125912361013471115812
3510124611135712168132791381024911
4411115512126613137711882299331010
5312106413117511286213973110842119
6213973110842119531210641311751128
7118822993310104411115512126613137
8132791381024911351012461113571216
9123610134711158122691337101481125
1011451112561213671317812892391034
1110541211651312761138721983210943
1296313107411185212963131074111852
1387219832109431110541211651312761
1781289239103410114511125612136713
2691337101481125912361013471115812
3510124611135712168132791381024911
4411115512126613137711882299331010
5312106413117511286213973110842119
6213973110842119531210641311751128
7118822993310104411115512126613137

Interstingly enough, the sections which seem to hold information about the vortec/ies they reflect seem to fall most often in the middle of the sine waves created by what appear to be very different "environments" or "gradients" between higher frequency oscillations of even and odd numbers (you might need to squint your eyes to see them), They are the waves defined by the more or less frequent oscillatory patterns taken as a whole. More about this in the "Rows" calculations in the "Increments" section below.


HORIZONTAL SCALED WAVES


Prime Series of Matrix is Forward Only

WAVE FORM POLE SHIFT: Highlighting the adjacent equal values.

1781289239103410114511125612136713
2691337101481125912361013471115812
3510124611135712168132791381024911
4411115512126613137711882299331010
5312106413117511286213973110842119
6213973110842119531210641311751128
7118822993310104411115512126613137
8132791381024911351012461113571216
9123610134711158122691337101481125
1011451112561213671317812892391034
1110541211651312761138721983210943
1296313107411185212963131074111852
1387219832109431110541211651312761
1781289239103410114511125612136713
2691337101481125912361013471115812
3510124611135712168132791381024911
4411115512126613137711882299331010
5312106413117511286213973110842119
6213973110842119531210641311751128
7118822993310104411115512126613137



HORIZONTAL SCALE [<->] (7/6): 1, 8, 2, 9, 3, 10, 4, 11, 5, 12, 6, 13, 7,


WAVE FORM SCALES: The Waveform Scales: EVEN Rhythms

1781289239103410114511125612136713
2691337101481125912361013471115812
3510124611135712168132791381024911
4411115512126613137711882299331010
5312106413117511286213973110842119
6213973110842119531210641311751128
7118822993310104411115512126613137
8132791381024911351012461113571216
9123610134711158122691337101481125
1011451112561213671317812892391034
1110541211651312761138721983210943
1296313107411185212963131074111852
1387219832109431110541211651312761
1781289239103410114511125612136713
2691337101481125912361013471115812
3510124611135712168132791381024911
4411115512126613137711882299331010
5312106413117511286213973110842119
6213973110842119531210641311751128
7118822993310104411115512126613137


Scale Pattern:

Not all detected waveforms will render completely above.


RED = Start of wave.

EVEN Waves

Starting 9: scale direction = forward, rhythm = 2, initial vertical = down, color = gold.

Starting 4: scale direction = forward, rhythm = 6, initial vertical = down, color = royalblue.

Starting 3: scale direction = forward, rhythm = 2, initial vertical = up, color = green.

Starting 6: scale direction = forward, rhythm = 2, initial vertical = down, color = salmon.

Starting 6: scale direction = forward, rhythm = 2, initial vertical = up, color = olive.

Starting 9: scale direction = forward, rhythm = 2, initial vertical = down, color = yellowgreen.

Starting 4: scale direction = forward, rhythm = 6, initial vertical = down, color = blueviolet.

Starting 3: scale direction = forward, rhythm = 2, initial vertical = up, color = bluegreen.

Starting 6: scale direction = forward, rhythm = 2, initial vertical = up, color = gold.


EVEN Tone 4 with 2 wavelength/s counted.
phi(wavelengths multiplied)/wavelengths added = 0.61804697156984*65/18 = 2.2318362862244
VENUS Calculation with 2 wavelength/s counted.
Half-wavelength for rhythm 2 is 5.
Half-wavelength for rhythm 6 is 13.
venus ratio = orbit of venus / orbit of earth = .615
venus ratio(wavelengths multiplied)/wavelengths added = .615*65/18 = 2.2208333333333
EVEN Tone 7 with 1 wavelength/s counted.
phi(wavelengths multiplied)/wavelengths added = 0.61804697156984*5/5 = 0.61804697156984
VENUS Calculation with 1 wavelength/s counted.
Half-wavelength for rhythm 2 is 5.
venus ratio = orbit of venus / orbit of earth = .615
venus ratio(wavelengths multiplied)/wavelengths added = .615*5/5 = 0.615



FORWARD BACKSLASH SCALED WAVES


Prime Series of Matrix is Forward Only



FORWARD SLASH DIAGONAL SCALE [/] (6/7): 1, 7, 13, 6, 12, 5, 11, 4, 10, 3, 9, 2, 8,


WAVE FORM SCALES: The Waveform Scales: EVEN Rhythms

1781289239103410114511125612136713
2691337101481125912361013471115812
3510124611135712168132791381024911
4411115512126613137711882299331010
5312106413117511286213973110842119
6213973110842119531210641311751128
7118822993310104411115512126613137
8132791381024911351012461113571216
9123610134711158122691337101481125
1011451112561213671317812892391034
1110541211651312761138721983210943
1296313107411185212963131074111852
1387219832109431110541211651312761
1781289239103410114511125612136713
2691337101481125912361013471115812
3510124611135712168132791381024911
4411115512126613137711882299331010
5312106413117511286213973110842119
6213973110842119531210641311751128
7118822993310104411115512126613137


Scale Pattern:

Not all detected waveforms will render completely above.


RED = Start of wave.

EVEN Waves

Starting 4: scale direction = forward, rhythm = 2, initial vertical = down, color = gold.

Starting 12: scale direction = forward, rhythm = 6, initial vertical = down, color = royalblue.

Starting 4: scale direction = forward, rhythm = 2, initial vertical = up, color = green.

Starting 7: scale direction = forward, rhythm = 2, initial vertical = down, color = salmon.

Starting 7: scale direction = forward, rhythm = 2, initial vertical = up, color = olive.

Starting 4: scale direction = forward, rhythm = 2, initial vertical = down, color = yellowgreen.

Starting 12: scale direction = forward, rhythm = 6, initial vertical = down, color = blueviolet.

Starting 4: scale direction = forward, rhythm = 2, initial vertical = up, color = bluegreen.

Starting 7: scale direction = forward, rhythm = 2, initial vertical = up, color = gold.


EVEN Tone 4 with 2 wavelength/s counted.
phi(wavelengths multiplied)/wavelengths added = 0.61804697156984*65/18 = 2.2318362862244
VENUS Calculation with 2 wavelength/s counted.
Half-wavelength for rhythm 2 is 5.
Half-wavelength for rhythm 6 is 13.
venus ratio = orbit of venus / orbit of earth = .615
venus ratio(wavelengths multiplied)/wavelengths added = .615*65/18 = 2.2208333333333
EVEN Tone 7 with 1 wavelength/s counted.
phi(wavelengths multiplied)/wavelengths added = 0.61804697156984*5/5 = 0.61804697156984
VENUS Calculation with 1 wavelength/s counted.
Half-wavelength for rhythm 2 is 5.
venus ratio = orbit of venus / orbit of earth = .615
venus ratio(wavelengths multiplied)/wavelengths added = .615*5/5 = 0.615



BACKWARD BACKSLASH SCALED WAVES


Prime Series of Matrix is Forward Only



BACKWARD SLASH DIAGONAL SCALE [\] (8/5): 1, 9, 4, 12, 7, 2, 10, 5, 13, 8, 3, 11, 6,


WAVE FORM SCALES: The Waveform Scales: EVEN Rhythms

1781289239103410114511125612136713
2691337101481125912361013471115812
3510124611135712168132791381024911
4411115512126613137711882299331010
5312106413117511286213973110842119
6213973110842119531210641311751128
7118822993310104411115512126613137
8132791381024911351012461113571216
9123610134711158122691337101481125
1011451112561213671317812892391034
1110541211651312761138721983210943
1296313107411185212963131074111852
1387219832109431110541211651312761
1781289239103410114511125612136713
2691337101481125912361013471115812
3510124611135712168132791381024911
4411115512126613137711882299331010
5312106413117511286213973110842119
6213973110842119531210641311751128
7118822993310104411115512126613137


Scale Pattern:

Not all detected waveforms will render completely above.


RED = Start of wave.

EVEN Waves

Starting 4: scale direction = forward, rhythm = 10, initial vertical = down, color = gold.

Starting 4: scale direction = forward, rhythm = 2, initial vertical = up, color = royalblue.

Starting 9: scale direction = forward, rhythm = 10, initial vertical = down, color = green.

Starting 9: scale direction = forward, rhythm = 2, initial vertical = down, color = salmon.

Starting 9: scale direction = forward, rhythm = 2, initial vertical = up, color = olive.

Starting 9: scale direction = forward, rhythm = 10, initial vertical = up, color = yellowgreen.

Starting 4: scale direction = forward, rhythm = 10, initial vertical = down, color = blueviolet.

Starting 4: scale direction = forward, rhythm = 2, initial vertical = up, color = bluegreen.

Starting 9: scale direction = forward, rhythm = 2, initial vertical = up, color = gold.

Starting 9: scale direction = forward, rhythm = 10, initial vertical = up, color = royalblue.


EVEN Tone 4 with 2 wavelength/s counted.
phi(wavelengths multiplied)/wavelengths added = 0.61804697156984*105/26 = 2.4959589236474
VENUS Calculation with 2 wavelength/s counted.
Half-wavelength for rhythm 10 is 21.
Half-wavelength for rhythm 2 is 5.
venus ratio = orbit of venus / orbit of earth = .615
venus ratio(wavelengths multiplied)/wavelengths added = .615*105/26 = 2.4836538461538
EVEN Tone 7 with 2 wavelength/s counted.
phi(wavelengths multiplied)/wavelengths added = 0.61804697156984*105/26 = 2.4959589236474
VENUS Calculation with 2 wavelength/s counted.
Half-wavelength for rhythm 10 is 21.
Half-wavelength for rhythm 2 is 5.
venus ratio = orbit of venus / orbit of earth = .615
venus ratio(wavelengths multiplied)/wavelengths added = .615*105/26 = 2.4836538461538

ODD/EVEN: Differences and Harmonics

These increment calculations show the relationships of the numbers in the grid by relating them to the ones in front of them (forward) and behind them (backwards) using the "tone" value as the base in the numbering system.


The diagonal increments still go down the row, but show the relationships between the number and the one diagonally above (forward) it and below it (backward).


The bold letters at the end of each row represent the Lambdona Notes that the ratios the repeating increments create.


Row

Forward (Odd/Even) (x,y)|(x+1,y)

As alluded to above, if you look at the number grid below, what I have noticed is that I can usually find 'vortex activity' starting and ending with rows that oscillate between '0' and another integer. So in this section, the vortex arrays are between "zero" and "infinity". In addition, between these rows, it seems to be important to have the intervals mirror one another as you move towards the center.

Row 1: 6161616161616161616161616G
Row 2: 4343434343434343434343434F
Row 3: 2525252525252525252525252Ab
Row 4: 0707070707070707070707070zero
Row 5: 11911911911911911911911911911911911911Eb
Row 6: 9119119119119119119119119119119119119A
Row 7: 7070707070707070707070707infinity
Row 8: 5252525252525252525252525E
Row 9: 3434343434343434343434343G
Row 10: 1616161616161616161616161F
Row 11: 12812812812812812812812812812812812812G
Row 12: 10101010101010101010101010101010101010101010101010C
Row 13: 8128128128128128128128128128128128128F
Row 14: 6161616161616161616161616G
Row 15: 4343434343434343434343434F
Row 16: 2525252525252525252525252Ab
Row 17: 0707070707070707070707070zero
Row 18: 11911911911911911911911911911911911911Eb
Row 19: 9119119119119119119119119119119119119A
Row 20: 7070707070707070707070707infinity

Backward (Odd/Even) (x,y)|(x-1,y)

Row 1: 7127127127127127127127127127127127127Eb
Row 2: 9109109109109109109109109109109109109Bb
Row 3: 11811811811811811811811811811811811811Gb
Row 4: 0606060606060606060606060zero
Row 5: 2424242424242424242424242C
Row 6: 4242424242424242424242424C
Row 7: 6060606060606060606060606infinity
Row 8: 8118118118118118118118118118118118118Gb
Row 9: 10910910910910910910910910910910910910D
Row 10: 12712712712712712712712712712712712712A
Row 11: 1515151515151515151515151Ab
Row 12: 3333333333333333333333333C
Row 13: 5151515151515151515151515E
Row 14: 7127127127127127127127127127127127127Eb
Row 15: 9109109109109109109109109109109109109Bb
Row 16: 11811811811811811811811811811811811811Gb
Row 17: 0606060606060606060606060zero
Row 18: 2424242424242424242424242C
Row 19: 4242424242424242424242424C
Row 20: 6060606060606060606060606infinity

Right to Left Diagonals across a Row

Forward (Odd/Even) (x,y)|(x+1,y-1)

RL Row 1: 5252525252525252525252525E
RL Row 2: 3434343434343434343434343G
RL Row 3: 1616161616161616161616161F
RL Row 4: 12812812812812812812812812812812812812G
RL Row 5: 10101010101010101010101010101010101010101010101010C
RL Row 6: 8128128128128128128128128128128128128F
RL Row 7: 6161616161616161616161616G
RL Row 8: 4343434343434343434343434F
RL Row 9: 2525252525252525252525252Ab
RL Row 10: 0707070707070707070707070zero
RL Row 11: 11911911911911911911911911911911911911Eb
RL Row 12: 9119119119119119119119119119119119119A
RL Row 13: 7070707070707070707070707infinity
RL Row 14: 5252525252525252525252525E
RL Row 15: 3434343434343434343434343G
RL Row 16: 1616161616161616161616161F
RL Row 17: 12812812812812812812812812812812812812G
RL Row 18: 10101010101010101010101010101010101010101010101010C
RL Row 19: 8128128128128128128128128128128128128F

Backward (Odd/Even) (x,y)|(x-1,y+1)

RL Row 1: 8118118118118118118118118118118118118Gb
RL Row 2: 10910910910910910910910910910910910910D
RL Row 3: 12712712712712712712712712712712712712A
RL Row 4: 1515151515151515151515151Ab
RL Row 5: 3333333333333333333333333C
RL Row 6: 5151515151515151515151515E
RL Row 7: 7127127127127127127127127127127127127Eb
RL Row 8: 9109109109109109109109109109109109109Bb
RL Row 9: 11811811811811811811811811811811811811Gb
RL Row 10: 0606060606060606060606060zero
RL Row 11: 2424242424242424242424242C
RL Row 12: 4242424242424242424242424C
RL Row 13: 6060606060606060606060606infinity
RL Row 14: 8118118118118118118118118118118118118Gb
RL Row 15: 10910910910910910910910910910910910910D
RL Row 16: 12712712712712712712712712712712712712A
RL Row 17: 1515151515151515151515151Ab
RL Row 18: 3333333333333333333333333C
RL Row 19: 5151515151515151515151515E

Left to Right Diagonals across a Row

Forward (Odd/Even) (x,y)|(x+1,y+1)

LR Row 1: 5252525252525252525252525E
LR Row 2: 3434343434343434343434343G
LR Row 3: 1616161616161616161616161F
LR Row 4: 12812812812812812812812812812812812812G
LR Row 5: 10101010101010101010101010101010101010101010101010C
LR Row 6: 8128128128128128128128128128128128128F
LR Row 7: 6161616161616161616161616G
LR Row 8: 4343434343434343434343434F
LR Row 9: 2525252525252525252525252Ab
LR Row 10: 0707070707070707070707070zero
LR Row 11: 11911911911911911911911911911911911911Eb
LR Row 12: 9119119119119119119119119119119119119A
LR Row 13: 7070707070707070707070707infinity
LR Row 14: 5252525252525252525252525E
LR Row 15: 3434343434343434343434343G
LR Row 16: 1616161616161616161616161F
LR Row 17: 12812812812812812812812812812812812812G
LR Row 18: 10101010101010101010101010101010101010101010101010C
LR Row 19: 8128128128128128128128128128128128128F

Backward (Odd/Even) (x,y)|(x-1,y-1)

LR Row 1: 8118118118118118118118118118118118118Gb
LR Row 2: 10910910910910910910910910910910910910D
LR Row 3: 12712712712712712712712712712712712712A
LR Row 4: 1515151515151515151515151Ab
LR Row 5: 3333333333333333333333333C
LR Row 6: 5151515151515151515151515E
LR Row 7: 7127127127127127127127127127127127127Eb
LR Row 8: 9109109109109109109109109109109109109Bb
LR Row 9: 11811811811811811811811811811811811811Gb
LR Row 10: 0606060606060606060606060zero
LR Row 11: 2424242424242424242424242C
LR Row 12: 4242424242424242424242424C
LR Row 13: 6060606060606060606060606infinity
LR Row 14: 8118118118118118118118118118118118118Gb
LR Row 15: 10910910910910910910910910910910910910D
LR Row 16: 12712712712712712712712712712712712712A
LR Row 17: 1515151515151515151515151Ab
LR Row 18: 3333333333333333333333333C
LR Row 19: 5151515151515151515151515E


PRIMES: Differences and Harmonics

The bold letters at the end of each row represent the Lambdona Notes that the ratios of repeating increment_prime_original create.


Row

Forward (Primes) (x,y)|(x+1,y)

Row 1: 5252525252525252525252525E
Row 2: 3434343434343434343434343G
Row 3: 1616161616161616161616161F
Row 4: 12812812812812812812812812812812812812G
Row 5: 10101010101010101010101010101010101010101010101010C
Row 6: 8128128128128128128128128128128128128F
Row 7: 6161616161616161616161616G
Row 8: 4343434343434343434343434F
Row 9: 2525252525252525252525252Ab
Row 10: 0707070707070707070707070zero
Row 11: 11911911911911911911911911911911911911Eb
Row 12: 9119119119119119119119119119119119119A
Row 13: 7070707070707070707070707infinity
Row 14: 5252525252525252525252525E
Row 15: 3434343434343434343434343G
Row 16: 1616161616161616161616161F
Row 17: 12812812812812812812812812812812812812G
Row 18: 10101010101010101010101010101010101010101010101010C
Row 19: 8128128128128128128128128128128128128F

Backward (Primes) (x,y)|(x-1,y)

Row 1: 8118118118118118118118118118118118118Gb
Row 2: 10910910910910910910910910910910910910D
Row 3: 12712712712712712712712712712712712712A
Row 4: 1515151515151515151515151Ab
Row 5: 3333333333333333333333333C
Row 6: 5151515151515151515151515E
Row 7: 7127127127127127127127127127127127127Eb
Row 8: 9109109109109109109109109109109109109Bb
Row 9: 11811811811811811811811811811811811811Gb
Row 10: 0606060606060606060606060zero
Row 11: 2424242424242424242424242C
Row 12: 4242424242424242424242424C
Row 13: 6060606060606060606060606infinity
Row 14: 8118118118118118118118118118118118118Gb
Row 15: 10910910910910910910910910910910910910D
Row 16: 12712712712712712712712712712712712712A
Row 17: 1515151515151515151515151Ab
Row 18: 3333333333333333333333333C
Row 19: 5151515151515151515151515E

Right to Left Diagonals across a Row

Forward (Primes) (x,y)|(x+1,y-1)

RL Row 1: 5252525252525252525252525E
RL Row 2: 3434343434343434343434343G
RL Row 3: 1616161616161616161616161F
RL Row 4: 12812812812812812812812812812812812812G
RL Row 5: 10101010101010101010101010101010101010101010101010C
RL Row 6: 8128128128128128128128128128128128128F
RL Row 7: 6161616161616161616161616G
RL Row 8: 4343434343434343434343434F
RL Row 9: 2525252525252525252525252Ab
RL Row 10: 0707070707070707070707070zero
RL Row 11: 11911911911911911911911911911911911911Eb
RL Row 12: 9119119119119119119119119119119119119A
RL Row 13: 7070707070707070707070707infinity
RL Row 14: 5252525252525252525252525E
RL Row 15: 3434343434343434343434343G
RL Row 16: 1616161616161616161616161F
RL Row 17: 12812812812812812812812812812812812812G
RL Row 18: 10101010101010101010101010101010101010101010101010C
RL Row 19: 8128128128128128128128128128128128128F

Backward (Primes) (x,y)|(x-1,y+1)

RL Row 1: 8118118118118118118118118118118118118Gb
RL Row 2: 10910910910910910910910910910910910910D
RL Row 3: 12712712712712712712712712712712712712A
RL Row 4: 1515151515151515151515151Ab
RL Row 5: 3333333333333333333333333C
RL Row 6: 5151515151515151515151515E
RL Row 7: 7127127127127127127127127127127127127Eb
RL Row 8: 9109109109109109109109109109109109109Bb
RL Row 9: 11811811811811811811811811811811811811Gb
RL Row 10: 0606060606060606060606060zero
RL Row 11: 2424242424242424242424242C
RL Row 12: 4242424242424242424242424C
RL Row 13: 6060606060606060606060606infinity
RL Row 14: 8118118118118118118118118118118118118Gb
RL Row 15: 10910910910910910910910910910910910910D
RL Row 16: 12712712712712712712712712712712712712A
RL Row 17: 1515151515151515151515151Ab
RL Row 18: 3333333333333333333333333C
RL Row 19: 5151515151515151515151515E

Left to Right Diagonals across a Row

Forward (Odd/Even) (x,y)|(x+1,y+1)

LR Row 1: 6161616161616161616161616G
LR Row 2: 4343434343434343434343434F
LR Row 3: 2525252525252525252525252Ab
LR Row 4: 0707070707070707070707070zero
LR Row 5: 11911911911911911911911911911911911911Eb
LR Row 6: 9119119119119119119119119119119119119A
LR Row 7: 7070707070707070707070707infinity
LR Row 8: 5252525252525252525252525E
LR Row 9: 3434343434343434343434343G
LR Row 10: 1616161616161616161616161F
LR Row 11: 12812812812812812812812812812812812812G
LR Row 12: 10101010101010101010101010101010101010101010101010C
LR Row 13: 8128128128128128128128128128128128128F
LR Row 14: 6161616161616161616161616G
LR Row 15: 4343434343434343434343434F
LR Row 16: 2525252525252525252525252Ab
LR Row 17: 0707070707070707070707070zero
LR Row 18: 11911911911911911911911911911911911911Eb
LR Row 19: 9119119119119119119119119119119119119A
LR Row 20: 7070707070707070707070707infinity

Backward (Primes) (x,y)|(x-1,y-1)

LR Row 1: 7127127127127127127127127127127127127Eb
LR Row 2: 9109109109109109109109109109109109109Bb
LR Row 3: 11811811811811811811811811811811811811Gb
LR Row 4: 0606060606060606060606060zero
LR Row 5: 2424242424242424242424242C
LR Row 6: 4242424242424242424242424C
LR Row 7: 6060606060606060606060606infinity
LR Row 8: 8118118118118118118118118118118118118Gb
LR Row 9: 10910910910910910910910910910910910910D
LR Row 10: 12712712712712712712712712712712712712A
LR Row 11: 1515151515151515151515151Ab
LR Row 12: 3333333333333333333333333C
LR Row 13: 5151515151515151515151515E
LR Row 14: 7127127127127127127127127127127127127Eb
LR Row 15: 9109109109109109109109109109109109109Bb
LR Row 16: 11811811811811811811811811811811811811Gb
LR Row 17: 0606060606060606060606060zero
LR Row 18: 2424242424242424242424242C
LR Row 19: 4242424242424242424242424C
LR Row 20: 6060606060606060606060606infinity


ODD+EVEN: Derivatives

The bold letters at the end of each row represent the Lambdona Notes that the ratios of repeating increments create.


ODD+EVEN: Original Matrix


Row 1: 7127127127127127127127127127127127127Eb
Row 2: 9109109109109109109109109109109109109Bb
Row 3: 11811811811811811811811811811811811811Gb
Row 4: 0606060606060606060606060zero
Row 5: 2424242424242424242424242C
Row 6: 4242424242424242424242424C
Row 7: 6060606060606060606060606infinity
Row 8: 8118118118118118118118118118118118118Gb
Row 9: 10910910910910910910910910910910910910D
Row 10: 12712712712712712712712712712712712712A
Row 11: 1515151515151515151515151Ab
Row 12: 3333333333333333333333333C
Row 13: 5151515151515151515151515E
Row 14: 7127127127127127127127127127127127127Eb
Row 15: 9109109109109109109109109109109109109Bb
Row 16: 11811811811811811811811811811811811811Gb
Row 17: 0606060606060606060606060zero
Row 18: 2424242424242424242424242C
Row 19: 4242424242424242424242424C
Row 20: 6060606060606060606060606infinity

First Derivative (Odd/Even)

Row 1: 858585858585858585858585Ab
Row 2: 121121121121121121121121121121121121G
Row 3: 310310310310310310310310310310310310Eb
Row 4: 767676767676767676767676Eb
Row 5: 112112112112112112112112112112112112Gb
Row 6: 211211211211211211211211211211211211Gb
Row 7: 676767676767676767676767A
Row 8: 103103103103103103103103103103103103A
Row 9: 112112112112112112112112112112112112F
Row 10: 585858585858585858585858E
Row 11: 949494949494949494949494D
Row 12: 000000000000000000000000
Row 13: 494949494949494949494949Bb
Row 14: 858585858585858585858585Ab
Row 15: 121121121121121121121121121121121121G
Row 16: 310310310310310310310310310310310310Eb
Row 17: 767676767676767676767676Eb
Row 18: 112112112112112112112112112112112112Gb
Row 19: 211211211211211211211211211211211211Gb
Row 20: 676767676767676767676767A

Second Derivative (Odd/Even)

Row 1: 3103103103103103103103103103103103Eb
Row 2: 11211211211211211211211211211211211Gb
Row 3: 67676767676767676767676A
Row 4: 1121121121121121121121121121121121F
Row 5: 94949494949494949494949D
Row 6: 49494949494949494949494Bb
Row 7: 12112112112112112112112112112112112G
Row 8: 76767676767676767676767Eb
Row 9: 2112112112112112112112112112112112Gb
Row 10: 10310310310310310310310310310310310A
Row 11: 58585858585858585858585E
Row 12: 00000000000000000000000
Row 13: 85858585858585858585858Ab
Row 14: 3103103103103103103103103103103103Eb
Row 15: 11211211211211211211211211211211211Gb
Row 16: 67676767676767676767676A
Row 17: 1121121121121121121121121121121121F
Row 18: 94949494949494949494949D
Row 19: 49494949494949494949494Bb
Row 20: 12112112112112112112112112112112112G



PRIMES: Derivatives

The bold letters at the end of each row represent the Lambdona Notes that the ratios of repeating increments create.


PRIMES: Original Matrix


Row 1: 7127127127127127127127127127127127127Eb
Row 2: 9109109109109109109109109109109109109Bb
Row 3: 11811811811811811811811811811811811811Gb
Row 4: 0606060606060606060606060zero
Row 5: 2424242424242424242424242C
Row 6: 4242424242424242424242424C
Row 7: 6060606060606060606060606infinity
Row 8: 8118118118118118118118118118118118118Gb
Row 9: 10910910910910910910910910910910910910D
Row 10: 12712712712712712712712712712712712712A
Row 11: 1515151515151515151515151Ab
Row 12: 3333333333333333333333333C
Row 13: 5151515151515151515151515E
Row 14: 7127127127127127127127127127127127127Eb
Row 15: 9109109109109109109109109109109109109Bb
Row 16: 11811811811811811811811811811811811811Gb
Row 17: 0606060606060606060606060zero
Row 18: 2424242424242424242424242C
Row 19: 4242424242424242424242424C
Row 20: 6060606060606060606060606infinity

First Derivative (Primes)

Row 1: 858585858585858585858585Ab
Row 2: 121121121121121121121121121121121121G
Row 3: 310310310310310310310310310310310310Eb
Row 4: 767676767676767676767676Eb
Row 5: 112112112112112112112112112112112112Gb
Row 6: 211211211211211211211211211211211211Gb
Row 7: 676767676767676767676767A
Row 8: 103103103103103103103103103103103103A
Row 9: 112112112112112112112112112112112112F
Row 10: 585858585858585858585858E
Row 11: 949494949494949494949494D
Row 12: 000000000000000000000000
Row 13: 494949494949494949494949Bb
Row 14: 858585858585858585858585Ab
Row 15: 121121121121121121121121121121121121G
Row 16: 310310310310310310310310310310310310Eb
Row 17: 767676767676767676767676Eb
Row 18: 112112112112112112112112112112112112Gb
Row 19: 211211211211211211211211211211211211Gb
Row 20: 676767676767676767676767A

Second Derivative (Primes)

Row 1: 3103103103103103103103103103103103Eb
Row 2: 11211211211211211211211211211211211Gb
Row 3: 67676767676767676767676A
Row 4: 1121121121121121121121121121121121F
Row 5: 94949494949494949494949D
Row 6: 49494949494949494949494Bb
Row 7: 12112112112112112112112112112112112G
Row 8: 76767676767676767676767Eb
Row 9: 2112112112112112112112112112112112Gb
Row 10: 10310310310310310310310310310310310A
Row 11: 58585858585858585858585E
Row 12: 00000000000000000000000
Row 13: 85858585858585858585858Ab
Row 14: 3103103103103103103103103103103103Eb
Row 15: 11211211211211211211211211211211211Gb
Row 16: 67676767676767676767676A
Row 17: 1121121121121121121121121121121121F
Row 18: 94949494949494949494949D
Row 19: 49494949494949494949494Bb
Row 20: 12112112112112112112112112112112112G

PRIMARY MATRIX DERIVATIVES ODD+EVEN: Derivatives

The bold letters at the end of each row represent the Lambdona Notes that the ratios of repeating PRIMARY MATRIX increments create.


PRIME (Odd/Even): Original Matrix


Row 1: 666666666666C
Row 2: 666666666666C
Row 3: 666666666666C
Row 4: 666666666666C
Row 5: 666666666666C
Row 6: 666666666666C
Row 7: 666666666666C
Row 8: 666666666666C
Row 9: 666666666666C
Row 10: 666666666666C
Row 11: 666666666666C
Row 12: 666666666666C
Row 13: 666666666666C
Row 14: 666666666666C
Row 15: 666666666666C
Row 16: 666666666666C
Row 17: 666666666666C
Row 18: 666666666666C
Row 19: 666666666666C
Row 20: 666666666666C



PRIMARY MATRIX DERIVATIVES PRIMES: Derivatives

The bold letters at the end of each row represent the Lambdona Notes that the ratios of repeating PRIMARY MATRIX increments create.


PRIMARY MATRIX: (Primes) Original Matrix


Row 1: 666666666666C
Row 2: 666666666666C
Row 3: 666666666666C
Row 4: 666666666666C
Row 5: 666666666666C
Row 6: 666666666666C
Row 7: 666666666666C
Row 8: 666666666666C
Row 9: 666666666666C
Row 10: 666666666666C
Row 11: 666666666666C
Row 12: 666666666666C
Row 13: 666666666666C
Row 14: 666666666666C
Row 15: 666666666666C
Row 16: 666666666666C
Row 17: 666666666666C
Row 18: 666666666666C
Row 19: 666666666666C
Row 20: 666666666666C